分析 (I)利用導(dǎo)數(shù)的幾何意義求出切線的斜率f′(1),再計(jì)算f(1),代入點(diǎn)斜式方程化簡即可;
(II)令f′(x)>0可得2x2-ax-1<0,根據(jù)二次函數(shù)的性質(zhì)及根與系數(shù)的關(guān)系可得s=0,t=$\frac{a+\sqrt{{a}^{2}+8}}{4}$,再利用函數(shù)單調(diào)性和a的范圍得出t-s的最大值.
解答 解:(Ⅰ)∵$f'(x)=\frac{1}{x}+a-2x$,∴$f'(1)=a-1=-\frac{1}{2}$,
又$f(1)=a-1=-\frac{1}{2}$,
∴y=f(x)的圖象在(1,f(1))處的切線方程為y+$\frac{1}{2}$=-$\frac{1}{2}$(x-1),即$y=-\frac{1}{2}x$.
(Ⅱ)$f'(x)=\frac{{1+ax-2{x^2}}}{x}\;({x>0})$,
令f′(x)>0得2x2-ax-1<0,
∵△=a2+8>0,∴2x2-ax-1=0有兩根x1,x2(x1<x2),
又${x_1}{x_2}=-\frac{1}{2}<0$,
∴(s,t)=(0,x2),則$t-s={x_2}=\frac{{a+\sqrt{{a^2}+8}}}{4}$,
而$y=\frac{{a+\sqrt{{a^2}+8}}}{4}$在(0,1]上單調(diào)遞增,
∴a=1時(shí),$\frac{a+\sqrt{{a}^{2}+8}}{4}$取得最大值1,
∴a=1時(shí)t-s取得最大值1.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,函數(shù)最值的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(x)=sin2x | B. | g(x)=cos2x | C. | $g(x)=sin(2x+\frac{π}{6})$ | D. | $g(x)=sin(2x+\frac{2π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 2i | D. | -2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$+π | B. | 4+π | C. | $\frac{4}{3}$+2π | D. | 4+2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5}{6}$π | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com