12.過雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的焦點(diǎn)$F(2\sqrt{2},0)$作漸近線垂線,垂足為A若△OAF的面積為2(O為坐標(biāo)原點(diǎn)),則雙曲線離心率為$\sqrt{2}$.

分析 S△OAF=2,運(yùn)用三角形的面積公式,結(jié)合a,b,c的關(guān)系,解得a=b=2,即可得到雙曲線離心率的值.

解答 解:在Rt△OAF中,$|{AF}|=c•sin∠AOF=c•\frac{c}=b$,同理,|OA|=a,
∴${S_{△OAF}}=\frac{1}{2}|{OA}|•|{AF}|=\frac{1}{2}ab$,
又S△OAF=2,∴ab=4,而$c=2\sqrt{2}$,即a2+b2=8,∴a=b=2,∴$e=\sqrt{2}$.
故答案為$\sqrt{2}$.

點(diǎn)評(píng) 本題考查雙曲線離心率的求法,考查三角形面積的計(jì)算,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{bn}和各項(xiàng)都是正數(shù)的數(shù)列{an},且a1=b1=1,b2+b4=10,滿足an2-2anan+1+an-2an+1=0
(1)求{an}和{bn}通項(xiàng)公式;
(2)設(shè)cn=$\frac{1}{a_n}+{b_n}$,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2-i}{1-i}$(i是虛數(shù)單位)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列命題中正確的是( 。
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2-4x-5=0”的充分不必要條件
C.命題“若x<-1,則x2-2x-3>0”的否命題為:“若x<-1,則x2-2x-3≤0”
D.已知命題p:?x∈R,x2+x-1<0,則¬p:?x∈R,x2+x-1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個(gè)幾何體的三視圖如圖所示,則此幾何體的體積為( 。
A.16B.36C.48D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+ax-x2(0<a≤1)
(I)$a=\frac{1}{2}$時(shí),求f(x)的圖象在點(diǎn)(1,f(1))處的切線的方程
(II)設(shè)函數(shù)f(x)單調(diào)遞增區(qū)間為(s,t)(s<t),求t-s的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,E,F(xiàn),H分別是棱PA,PB,AD的中點(diǎn),且過E,F(xiàn),H的平面截四棱錐P-ABCD所得截面面積為$\frac{{3\sqrt{2}}}{2}$,則四棱錐P-ABCD的體積為( 。
A.$\frac{8}{3}$B.8C.$8\sqrt{3}$D.$24\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的漸近線方程為y=±$\frac{\sqrt{2}}{2}$x,則該曲線的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的函數(shù)y=f(x)在(-∞,a)上是增函數(shù),函數(shù)y=f(x+a)是偶函數(shù),當(dāng)x1<x2且x1+x2>2a時(shí),有(  )
A.f(2a-x1)<f(2a-x2B.f(2a-x1)>f(2a-x2C.f(2a-x1)=f(2a-x2D.以上都不正確

查看答案和解析>>

同步練習(xí)冊(cè)答案