2.設(shè)f(x)=x3,則函數(shù)y=f(a-bx)(其中a,b∈R)的導(dǎo)函數(shù)是(  )
A.y′=3(a-bx)B.y′=2-3b(a-bx)2C.y′=-3b(a-bx)2D.y′=3b(a-bx)2

分析 利用導(dǎo)數(shù)的運(yùn)算法則即可得出.

解答 解:y=f(a-bx)=(a-bx)3,
∴y′=3(a-bx)2×(-b)=-3b(a-bx)2
故選:C.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.拋物線N1:y=ax2+bx+c與拋物線N2:y=-ax2+dx+e的頂點(diǎn)分別為P1(x1,y1)與P2(x2,y2),且兩拋物線相交于點(diǎn)A(12,21)與B(28,3)(均異于頂點(diǎn)),則$\frac{{{x_1}+{x_2}}}{{{y_1}+{y_2}}}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.過雙曲線$\frac{x^2}{4}-\frac{y^2}{5}=1$的右焦點(diǎn)做傾斜角為45°的弦AB.求:
(1)求弦AB的中點(diǎn)C到右焦點(diǎn)F2的距離;
(2)求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ex-ax-1(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求在f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知回歸方程為$\hat y=8x-70$,則該方程在樣本(10,13)處的殘差為( 。
A.10B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.復(fù)數(shù)$z=\frac{i}{-2-i}$(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{\sqrt{4x+5-{x^2}}}}{x+1}$的定義域?yàn)榧螦,函數(shù)g(x)=lg(-x2+2x+m)的定義域?yàn)榧螧.
(1)當(dāng)m=3時(shí),求集合A∩B;
(2)若A∩B={x|-1<x<4},求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ex-alnx-a,其中常數(shù)a>0.
(1)當(dāng)a=e時(shí),求函數(shù)f(x)的最小值;
(2)若不等式f(x)≥0對(duì)任意x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)y=f(x)有兩個(gè)零點(diǎn)x1,x2(其中0<x1<x2),求證:$\frac{1}{a}$<x1<1<x2<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=$\frac{1}{2}$ax2-x-lnx,a∈R
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值;
(2)若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案