15.用分析法證明:$\sqrt{2a}-\sqrt{2a-1}<\sqrt{2a-2}-\sqrt{2a-3}$(其中$a≥\frac{3}{2}$)

分析 依題意,要證:成立,利用分析法的語言,需證其充分條件成立,直至0<2顯然成立,從而可知原結(jié)論成立.

解答 證明:要證$\sqrt{2a}-\sqrt{2a-1}<\sqrt{2a-2}-\sqrt{2a-3}$(其中$a≥\frac{3}{2}$),
只需證$\sqrt{2a}$+$\sqrt{2a-3}$<$\sqrt{2a-1}$+$\sqrt{2a-2}$,
只需證($\sqrt{2a}$+$\sqrt{2a-3}$)2<($\sqrt{2a-1}$+$\sqrt{2a-2}$)2,
即證4a-3+2$\sqrt{4{a}^{2}-6a}$<4a-3+2$\sqrt{4{a}^{2}-6a+2}$,
即證$\sqrt{4{a}^{2}-6a}$<$\sqrt{4{a}^{2}-6a+2}$,
即證4a2-6a<4a2-6a+2,
即證0<2
上式顯然成立,
故原不等式成立

點(diǎn)評 本題考查不等式的證明,著重考查分析法的應(yīng)用,考查推理能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a=-2${\;}^{1-lo{g}_{2}3}$,b=1-log23,c=cos$\frac{5π}{6}$,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,拋物線E:x2=2py(p>0)的焦點(diǎn)為(0,1),圓心M在射線y=2x(x≥0)上且半徑為2的圓M與y軸相切.
(Ⅰ)求拋物線E及圓M的方程;
(Ⅱ)過P(2,0)作兩條相互垂直的直線,與拋物線E相交于A,B兩點(diǎn),與圓M相交于C,D兩點(diǎn),N為線段CD的中點(diǎn),當(dāng)${S_{△NAB}}=4\sqrt{5}$,求AB所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)向量$\overrightarrow{a}$=(2,3),向量$\overrightarrow$=(6,t),若$\overrightarrow{a}$與$\overrightarrow$夾角為鈍角,則實(shí)數(shù)t的取值范圍為(-∞,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)等差數(shù)列{an}的公差為d,d≠0,若{an}的前10項(xiàng)之和大于其前21項(xiàng)之和,則( 。
A.d<0B.d>0C.a16<0D.a16>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|-1≤x<3},B={x∈Z|x2<4},則A∩B=( 。
A.{0,1}B.{-1,0,1}C.{-1,0,1,2}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=sinωx(cosωx-\sqrt{3}sinωx)+\frac{{\sqrt{3}}}{2}(ω>0)$的最小正周期為$\frac{π}{2}$.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)實(shí)數(shù)a,b滿足|a|>|b|,則“a-b>0”是“a+b>0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高二文下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知a>0,b>0,且2a+b=ab,則a+2b的最小值為( )

A.5+ B. C.5 D.9

查看答案和解析>>

同步練習(xí)冊答案