【題目】如圖,直角梯形,,將沿折起來,使平面平面.如圖,設(shè)為的中點(diǎn),,的中點(diǎn)為.
()求證:平面.
()求平面與平面所成銳二面角的余弦值.
()在線段上是否存在點(diǎn),使得平面,若存在確定點(diǎn)的位置,若不存在,說明理由.
【答案】(1)證明見解析;(2);(3)不存在,理由見解析.
【解析】
(1)通過面面垂直的性質(zhì)證得;
(2)建立空間直角坐標(biāo)系,計(jì)算出兩個(gè)半平面的法向量所成角的余弦值即可得解;
(3)假設(shè)存在,設(shè)出點(diǎn)的坐標(biāo),利用求解,找出矛盾.
(1),的中點(diǎn)為,連接,必有,
由題:平面平面,交線為,平面,
根據(jù)面面垂直的性質(zhì)可得平面;
(2)取中點(diǎn),連接,則,
由圖1直角梯形可知,為正方形,
,
所以
由(1)平面,所以兩兩互相垂直,分別以為軸的正方向建立空間直角坐標(biāo)系如圖所示,
則,,
所以,,
設(shè)平面的法向量為,
則,取,則
即平面的法向量為,平面,
取平面的法向量
平面與平面所成銳二面角的余弦值;
(3)假設(shè)線段上是否存在點(diǎn),使得平面,設(shè),
所以,必有
即,,解得,與矛盾,
所以線段上不存在點(diǎn),使得平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”.為了了解人們對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖如圖所示, 支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表:
年齡(歲) | |||||
支持“延遲退休年齡政策”人數(shù) | 15 | 5 | 15 | 28 | 17 |
(I)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
年齡低于45歲的人數(shù) | 年齡不低于45歲的人數(shù) | 總計(jì) | |
支持 | |||
不支持 | |||
總計(jì) |
(II)通過計(jì)算判斷是否有的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對“延遲退休年齡政策”的態(tài)度有差異.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】遞增的等差數(shù)列的前項(xiàng)和為.若與是方程的兩個(gè)實(shí)數(shù)根.
(1)求數(shù)列的通項(xiàng)公式;
(2)當(dāng)為多少時(shí),取最小值,并求其最小值;
(3)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)賣場對市民進(jìn)行國產(chǎn)手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)和頻數(shù)分布表和頻率分布直線圖如下:
分組(歲) | 頻數(shù) |
合計(jì) |
(1)求頻率分布表中、的值,并補(bǔ)全頻率分布直方圖;
(2)在抽取的這名市民中,按年齡進(jìn)行分層抽樣,抽取人參加國產(chǎn)手機(jī)用戶體驗(yàn)問卷調(diào)查,現(xiàn)從這人中隨機(jī)選取人各贈(zèng)送精美禮品一份,設(shè)這名市民中年齡在內(nèi)的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次該產(chǎn)品的相關(guān)數(shù)據(jù).
x(萬元) | 3 | 5 | 7 | 9 | 11 |
y(萬元) | 8 | 10 | 13 | 17 | 22 |
(1)求y關(guān)于x的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本12萬元的毛利率更大還是投入成本15萬元的毛利率更大(毛利率)?
相關(guān)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)口袋中有個(gè)白球和個(gè)紅球(,且),每次從袋中摸出兩個(gè)球(每次摸球后把這兩個(gè)球放回袋中),若摸出的兩個(gè)球顏色相同為中獎(jiǎng),否則為不中獎(jiǎng).
(1)試用含的代數(shù)式表示一次摸球中獎(jiǎng)的概率;
(2)若,求三次摸球恰有一次中獎(jiǎng)的概率;
(3)記三次摸球恰有一次中獎(jiǎng)的概率為,當(dāng)為何值時(shí),取最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD是菱形,∠ABC=60°,PA=AC,PB=PD=AC,E是PD的中點(diǎn),求證:
(1)PB∥平面ACE;
(2)平面PAC⊥平面ABCD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com