1.極坐標(biāo)方程θ=$\frac{π}{6}$(ρ≥0)表示的曲線是一條( 。
A.射線B.直線
C.垂直于極軸的直線D.

分析 由x=ρcosθ,y=ρsinθ,可得tanθ=$\frac{y}{x}$.由條件,化簡整理可得曲線表示的是一條射線.

解答 解:由x=ρcosθ,y=ρsinθ,
可得tanθ=$\frac{y}{x}$.
極坐標(biāo)方程θ=$\frac{π}{6}$(ρ≥0),
可得射線y=tanθ•x,即有y=tan$\frac{π}{6}$•x,
即y=$\frac{\sqrt{3}}{3}$x(x≥0).
故選:A.

點評 本題考查直角坐標(biāo)方程和極坐標(biāo)方程的互化,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)有一決策系統(tǒng),其中每個成員作出的決策互不影響,且每個成員作正確決策的概率均為p(0<p<1).當(dāng)占半數(shù)以上的成員作出正確決策時,系統(tǒng)作出正確決策.要使有5位成員的決策系統(tǒng)比有3位成員的決策系統(tǒng)更為可靠,p的取值范圍是( 。
A.(${\frac{1}{3}$,1)B.(${\frac{1}{2}$,1)C.(-${\frac{2}{3}$,1)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.命題p:log2(6x+12)≥log2(x2+3x+2);命題q:4ax+a<${2^{{x^2}-2x-3}}$;
(Ⅰ)若p為真命題,求x的取值范圍;
(Ⅱ)若p為真命題是q為真命題的充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若集合S={0,1,2},P={2},那么S∪P=(  )
A.{0,1,2,2}B.{0,1,2}C.{0}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,$\overrightarrow{BC}•\overrightarrow{AC}-\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AC}{|^2}$,則△ABC的形狀一定是( 。
A.等邊三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知全集為R,且集合A={x|log2(x+1)<2},B={x|$\frac{x-2}{x+3}$≥0},則A∩(∁RB)等于(  )
A.[-3,2)B.[-3,2]C.(-1,2)D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,已知點P(1,-2),直線l:$\left\{\begin{array}{l}x=1+m\\ y=-2+m\end{array}$(m為參數(shù)),以坐標(biāo)原點為極點,以x軸的正半軸為極軸建立極坐標(biāo)系;曲線C的極坐標(biāo)方程為ρsin2θ=2cosθ;直線l與曲線C的交點為A,B.
(1)求直線l和曲線C的普通方程;
(2)求$\frac{1}{{|{PA}|}}$+$\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)求過直線l1:2x-3y+1=0和l2:4x+y+9=0的交點,且平行于直線2x-y+7=0的直線l的方程.
(2)求過點(1,2),且在x軸與y軸上的截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:解答題

設(shè)分別是橢圓的左右焦點,上一點,且軸垂直,直線的另一個交點為

(1)若直線的斜率為,求的離心率;

(2)若直線軸上的截距為2,且,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案