12.已知ω>0,函數(shù)$f(x)=sin({ωx-\frac{π}{3}})$在$({\frac{π}{3},\frac{π}{2}})$上單調(diào)遞減,則ω的取值范圍是( 。
A.$[{\frac{5}{2},\frac{11}{3}}]$B.$[{\frac{1}{2},\frac{3}{4}}]$C.$({0,\frac{1}{2}}]$D.$({0,\frac{11}{3}}]$

分析 根據(jù)正弦函數(shù)的單調(diào)減區(qū)間,結(jié)合題意,得出不等式組$\left\{\begin{array}{l}{\frac{5π}{6ω}≤\frac{π}{3}}\\{\frac{11π}{6ω}≥\frac{π}{2}}\end{array}\right.$,求出ω的取值范圍即可.

解答 解:∵x∈($\frac{π}{3}$,$\frac{π}{2}$),ω>0,
且函數(shù)f(x)=sin(ωx-$\frac{π}{3}$)在($\frac{π}{3}$,$\frac{π}{2}$)上單調(diào)遞減,
由f(x)的單調(diào)減區(qū)間滿足:$\frac{π}{2}$+2kπ<ωx-$\frac{π}{3}$<$\frac{3π}{2}$+2kπ,k∈Z,
取k=0,得$\frac{5π}{6ω}$≤x≤$\frac{11π}{6ω}$,
即$\left\{\begin{array}{l}{\frac{5π}{6ω}≤\frac{π}{3}}\\{\frac{11π}{6ω}≥\frac{π}{2}}\end{array}\right.$,
解得$\frac{5}{2}$≤ω≤$\frac{11}{3}$;
∴ω的取值范圍是[$\frac{5}{2}$,$\frac{11}{3}$].
故選:A.

點(diǎn)評(píng) 本題考查了函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出下列幾個(gè)命題:
①命題p:任意x∈R,都有cosx≤1,則¬p:存在x0∈R,使得cosx0≤1
②命題“若a>2且b>2,則a+b>4且ab>4”的逆命題為假命題
③空間任意一點(diǎn)O和三點(diǎn)A,B,C,則$\overrightarrow{OA}$=3$\overrightarrow{OB}$=2$\overrightarrow{OC}$是A,B,C三點(diǎn)共線的充分不必要條件
④線性回歸方程y=bx+a對(duì)應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),…,(xn,yn)中的一個(gè)
其中不正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示的程序框圖,若f(x)=logax,g(x)=lnx,輸入x=2016,則輸出的h(x)=( 。
A.2016B.2017C.loga2016D.loga2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b,c成等差數(shù)列,C=2A.
(1)求cosA;
(2)設(shè)$a=\frac{{4{m^2}+4m+9}}{m+1}$(m>0),求△ABC的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{{2}^{x}+\frac{a}{{2}^{x}}-2}$.
(1)若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若f(x)的值域?yàn)閇0,+∞),求實(shí)數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a<0,則“ax0=b”的充要條件是( 。
A.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0B.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
C.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0D.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}滿足an+1=an+$\frac{1}{2}$,則數(shù)列{an}是( 。
A.遞增數(shù)列B.遞減數(shù)列C.擺動(dòng)數(shù)列D.常數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a>0,b>0,a+b=1.
(Ⅰ)求$y=(a+\frac{1}{a})(b+\frac{1})$的最小值.
(Ⅱ)求證:${(a+\frac{1}{a})^2}+{(b+\frac{1})^2}≥\frac{25}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線l與橢圓4x2+9y2=36相交于A,B兩點(diǎn),弦AB的中點(diǎn)坐標(biāo)為(1,1),則直線l的方程為4x+9y-13=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案