12.將參數(shù)方程$\left\{{\begin{array}{l}{x=\sqrt{t}+1}\\{y=1-2\sqrt{t}}\end{array}}\right.$(t為參數(shù))化為普通方程是2x+y-3=0.

分析 2x=2$\sqrt{t}$+2,與y=1-2$\sqrt{t}$相加即可得出.

解答 解:2x=2$\sqrt{t}$+2,與y=1-2$\sqrt{t}$相加可得:2x+y=3.
故答案為:2x-y-3=0.

點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(x)的定義域是R,則下列命題中不正確的是( 。
A.若f(x)是奇函數(shù),則f(f(x))也是奇函數(shù)
B.若f(x)是周期函數(shù),則f(f(x))也是周期函數(shù)
C.若f(x)是單調(diào)遞減函數(shù),則f(f(x))也是單調(diào)遞減函數(shù)
D.若方程f(x)=x有實(shí)根,則方程f(f(x))=x也有實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD是正三角形,且平面PAD⊥平面ABCD,O為棱AD的中點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)求二面角A-PD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,曲線C2的極坐標(biāo)方程為:ρ2(1+sin2θ)=8,
(I)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(II)若C1與C2交于兩點(diǎn)A,B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.過拋物線y=4x2的焦點(diǎn)作直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),若y1+y2=5,則線段AB的長為$\frac{41}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實(shí)數(shù)x,y滿足關(guān)系$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 1≤y≤3\end{array}\right.$,則$z=\frac{1}{2}x-y$的取值范圍為(-$\frac{7}{2}$,$-\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號(hào).
(1)如果從第8行第7列的數(shù)開始向右讀,請(qǐng)你依次寫出最先檢查的3個(gè)人的編號(hào);(下面摘取了第7行到第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?br />
人數(shù)數(shù)學(xué)
優(yōu)秀良好及格
地理優(yōu)秀7205
良好9186
及格a4b
成績分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向、縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫娜藬?shù)共有20+18+4=42.
①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值;
②在地理成績及格的學(xué)生中,已知a≥11,b≥7,求數(shù)學(xué)成績優(yōu)秀人數(shù)比及格人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平行四邊形ABCD中,AB=4,AD=3,若$\overrightarrow{CE}$=$\frac{1}{3}$$\overrightarrow{CB}$$+\frac{1}{4}$$\overrightarrow{CD}$,則$\overrightarrow{AE}$=(  )
A.$\frac{3}{4}$$\overrightarrow{AB}$$+\frac{2}{3}$$\overrightarrow{AD}$B.$\frac{2}{3}$$\overrightarrow{AB}$$+\frac{1}{2}$$\overrightarrow{AD}$C.$\frac{4}{5}$$\overrightarrow{AB}$$+\frac{3}{4}$$\overrightarrow{AD}$D.$\frac{5}{4}$$\overrightarrow{AB}$$+\frac{4}{3}$$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.計(jì)算:sin20°sin100°-cos160°sin10°=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案