分析 (1)利用余弦定理,求出BD,即可求$\sqrt{3}$cosA-cosC的值;
(2)求出S12+S22的表達(dá)式,-1<cosC<$\sqrt{3}$-1,即可求S12+S22的最大值.
解答 解:(1)在△ABD中,DB=$\sqrt{16-8\sqrt{3}cosA}$,
在△BCD中,DB=$\sqrt{8-8cosC}$,
所以$\sqrt{3}$cosA-cosC=1.
(2)依題意S12=12-12cos2A,S22=4-4cos2C,
所以S12+S22=12-12cos2A+4-4cos2C=-8cos2C-8cosC+12=-8(cosC+$\frac{1}{2}$)2+14,
因?yàn)?$\sqrt{3}-2<BD<4$,所以-8cosC∈(16-8$\sqrt{3}$,16).
解得-1<cosC<$\sqrt{3}$-1,所以S12+S22≤14,當(dāng)cosC=-$\frac{1}{2}$時(shí)取等號(hào),即S12+S22的最大值為14.
點(diǎn)評(píng) 本題考查余弦定理的運(yùn)用,考查三角形面積的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
題號(hào) | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度Pi | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
題號(hào) | 1 | 2 | 3 | 4 | 5 |
實(shí)測(cè)答對(duì)人數(shù) | 16 | 16 | 14 | 14 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}}{2}$或$\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$或$\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b>a>c | B. | b>c>a | C. | a>b>c | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com