分析 (Ⅰ)根據(jù)線面垂直的判定,先證明BD⊥平面PAC,利用線面垂直的性質(zhì)即可證明BD⊥PM.
(Ⅱ)過O作OH⊥PM交PM于H,連HD,則∠OHD為A-PM-D的平面角,利用二面角O-PM-D的正切值為2√6,即可求出PAAD的值.
解答 (Ⅰ)證明:∵四棱錐P-ABCD中,PA⊥平面ABCD,
又BD?平面ABCD,∴BD⊥PA,
∵底面ABCD是菱形,
∴BD⊥AC,
又PA∩AC=A,∴BD⊥平面PAC,
又PM?平面PAC,
∴BD⊥PM.
(Ⅱ)解:過O作OH⊥PM交PM于H,連HD,
因?yàn)镈O⊥平面PAC,由三垂線定理可得DH⊥PM,
所以∠OHD為A-PM-D的平面角,
設(shè)PA=b,AD=4,
∵底面ABCD是邊長為4的菱形,∠BAD=120°,
∴OD=2√3,OM=1,AM=3,且OHOM=APPM,
從而OH=OM•APPM=1•b√2+94=2b√42+9,
∴tan∠OHD=ODOH=√3(162+36)2b,
所以16b2=144,解得b=3.(舍負(fù)值)
∴PA的長為3.
則PAAD=34.
點(diǎn)評 本題考查線面垂直、面面垂直的判定,考查面面角,解題的關(guān)鍵是掌握線面垂直、面面垂直的判定,作出面面角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2√2 | B. | √10 | C. | √11 | D. | 2√3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com