【題目】已知函數(shù),曲線在點(diǎn)處的切線平行于軸.

(1)求的單調(diào)區(qū)間;

(2)證明:當(dāng)時(shí),恒成立.

【答案】(1)遞減區(qū)間為,遞增區(qū)間為;(2)證明見(jiàn)解析.

【解析】

試題分析:(1)本題首先由導(dǎo)數(shù)的幾何意義知,從而求得值,然后通過(guò)確定增區(qū)間,確定減區(qū)間;(2)考慮到,因此首先證明特殊情況,的情況,此時(shí)研究函數(shù),求出導(dǎo)函數(shù),為了確定的正負(fù),設(shè)并求導(dǎo)得,考慮到式子中的,可分類證明時(shí)都有,即單調(diào)遞增,因此只有唯一解,正負(fù)隨之而定,從而得,于是結(jié)論得證.再由不等式的性質(zhì)也得證.

試題解析:(1)由,依題意,,有,所以,顯然上單調(diào)遞增,且,故當(dāng),當(dāng),所以函數(shù)的遞減區(qū)間為,遞增區(qū)間為.

(2)設(shè).

當(dāng)時(shí),,設(shè).

當(dāng)時(shí),,當(dāng)時(shí),,則,所以單增且故當(dāng),當(dāng) ,所以.

時(shí),因?yàn)?/span>所以

綜上所述,當(dāng)時(shí),恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)yf(x)的導(dǎo)函數(shù)yf′(x)的圖象如圖所示,給出下列命題:

①-3是函數(shù)yf(x)的極值點(diǎn);

②-1是函數(shù)yf(x)的最小值點(diǎn);

yf(x)在區(qū)間(3,1)上單調(diào)遞增;

yf(x)x0處切線的斜率小于零.

以上正確命題的序號(hào)是(  )

A. ①②B. ③④C. ①③D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)且為常數(shù)),則下列結(jié)論正確的是(

A.當(dāng)時(shí),存在實(shí)數(shù),使得關(guān)于的方程有四個(gè)不同的實(shí)數(shù)根

B.存在,使得關(guān)于的方程有三個(gè)不同的實(shí)數(shù)根

C.當(dāng)時(shí),若函數(shù)恰有個(gè)不同的零點(diǎn)、、,則

D.當(dāng)時(shí),且關(guān)于的方程有四個(gè)不同的實(shí)數(shù)根、、、,若上的最大值為,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且,.

1)計(jì)算,,,并求數(shù)列的通項(xiàng)公式;

2)若數(shù)列滿足,求證:數(shù)列是等比數(shù)列;

3)由數(shù)列的項(xiàng)組成一個(gè)新數(shù)列,,,,,設(shè)為數(shù)列的前項(xiàng)和,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為實(shí)常數(shù).

)判斷的奇偶性;

)若對(duì)任意,使不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)的定義域?yàn)閇-1,1],當(dāng)時(shí),。

(1)求函數(shù)上的值域;

(2)若時(shí),函數(shù)的最小值為-2,求實(shí)數(shù)λ的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙二人用4張撲克牌(分別是紅桃2,紅桃3,紅桃4,方片4)完游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.

1)設(shè)分別表示甲、乙抽到的牌的數(shù)字,寫(xiě)出甲乙二人抽到的牌的所有情況;

2)若甲抽到紅桃3,則乙抽出的牌的牌面數(shù)字比3大的概率是多少?

3)甲乙約定:若甲抽到的牌的牌面數(shù)字比乙大,則甲勝,反之,則乙勝,你認(rèn)為此游戲是否公平,說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人玩一種游戲,每次由甲、乙各出1到5根手指,若和為偶數(shù)算甲贏,否則算乙贏.

(1)若以表示和為6的事件,求;

(2)現(xiàn)連玩三次,若以表示甲至少贏一次的事件,表示乙至少贏兩次的事件,試問(wèn)是否為互斥事件?為什么?

(3)這種游戲規(guī)則公平嗎?試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其

上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

保費(fèi)

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

頻數(shù)

60

50

30

30

20

10

1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”.的估計(jì)值;

2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”.的估計(jì)值;

查看答案和解析>>

同步練習(xí)冊(cè)答案