【題目】已知奇函數(shù)的定義域?yàn)閇-1,1],當(dāng)時(shí),。
(1)求函數(shù)在上的值域;
(2)若時(shí),函數(shù)的最小值為-2,求實(shí)數(shù)λ的值。
【答案】(1);(2)
【解析】
(1)利用函數(shù)的奇偶性、指數(shù)函數(shù)的單調(diào)性求出函數(shù)f(x)在上的值域.
(2)根據(jù)f(x)的范圍,利用條件以及二次函數(shù)的性質(zhì),分類討論求得實(shí)數(shù)λ的值.
(1)設(shè)x∈(0,1],則﹣x∈[﹣1,0)時(shí),所以f(﹣x)2x.
又因?yàn)?/span>f(x)為奇函數(shù),所以有f(﹣x)=﹣f(x),
所以當(dāng)x∈(0,1]時(shí),f(x)=﹣f(﹣x)=2x,所以在上的值域?yàn)椋?,2],
(2)由(1)知當(dāng)x∈(0,1]時(shí),f(x)∈(1,2],
所以f(x)∈(,1].
令tf(x),則 t≤1,
g(t)f2(x)f(x)+1=t2﹣λt+11,
①當(dāng),即λ≤1時(shí),g(t)>g(),無最小值,
②當(dāng)1,即1<λ≤2時(shí),g(t)min=g()=12,
解得λ=±2 (舍去).
③當(dāng)1,即λ>2時(shí),g(t)min=g(1)=﹣2,解得λ=4,
綜上所述,λ=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年10月24日,世界上最長(zhǎng)的跨海大橋一港珠澳大橋正式通車在一般情況下,大橋上的車流速度單位:千米時(shí)是車流密度單位:輛千米的函數(shù)當(dāng)橋上的車流密度達(dá)到220輛千米時(shí),將造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛千米時(shí),車流速度為100千米時(shí),研究表明:當(dāng)時(shí),車流速度v是車流密度x的一次函數(shù).
Ⅰ當(dāng)時(shí),求函數(shù)的表達(dá)式;
Ⅱ當(dāng)車流密度x為多大時(shí),車流量單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛時(shí)可以達(dá)到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 在統(tǒng)計(jì)學(xué)中,回歸分析是檢驗(yàn)兩個(gè)分類變量是否有關(guān)系的一種統(tǒng)計(jì)方法
B. 線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的,,
一個(gè)點(diǎn)
C. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D. 在回歸分析中,相關(guān)指數(shù)為的模型比相關(guān)指數(shù)為的模型擬合的效果差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,設(shè)。
(1)求函數(shù)的最小正周期;
(2)當(dāng)時(shí),求函數(shù)的最大值及最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“漸減數(shù)”是指每個(gè)數(shù)字比其左邊數(shù)字小的正整數(shù)(如98765),若把所有的五位漸減數(shù)按從小到大的順序排列,則第20個(gè)數(shù)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上饒某購物中心在開業(yè)之后,為了解消費(fèi)者購物金額的分布,在當(dāng)月的電腦消費(fèi)小票中隨機(jī)抽取張進(jìn)行統(tǒng)計(jì),將結(jié)果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設(shè)消費(fèi)金額均在元的區(qū)間內(nèi)).
(1)若在消費(fèi)金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自元區(qū)間的概率;
(2)為做好五一勞動(dòng)節(jié)期間的商場(chǎng)促銷活動(dòng),策劃人員設(shè)計(jì)了兩種不同的促銷方案:
方案一:全場(chǎng)商品打8.5折;
方案二:全場(chǎng)購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個(gè)小組取中間值作為該組數(shù)據(jù)的替代值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面以任意角度截正方體,所截得的截面圖形可以是_____填上所有你認(rèn)為正確的序號(hào)
正三邊形 正四邊形 正五邊形 正六邊形 鈍角三角形 等腰梯形 非矩形的平行四邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com