8.函數(shù)f(x)=ln(x2-2x-8)的單調(diào)遞增區(qū)間是( 。
A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)

分析 由x2-2x-8>0得:x∈(-∞,-2)∪(4,+∞),令t=x2-2x-8,則y=lnt,結(jié)合復(fù)合函數(shù)單調(diào)性“同增異減”的原則,可得答案.

解答 解:由x2-2x-8>0得:x∈(-∞,-2)∪(4,+∞),
令t=x2-2x-8,則y=lnt,
∵x∈(-∞,-2)時,t=x2-2x-8為減函數(shù);
x∈(4,+∞)時,t=x2-2x-8為增函數(shù);
y=lnt為增函數(shù),
故函數(shù)f(x)=ln(x2-2x-8)的單調(diào)遞增區(qū)間是(4,+∞),
故選:D.

點評 本題考查的知識點是復(fù)合函數(shù)的單調(diào)性,對數(shù)函數(shù)的圖象和性質(zhì),二次數(shù)函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,一根長l(單位:cm)的線,一端固定,另一端懸掛一個小球,小球擺動時,離開平衡位置的位移s(單位:cm)與時間t(單位:s)的函數(shù)關(guān)系是:s=3cos($\sqrt{\frac{g}{l}}$t+$\frac{π}{3}$),t∈[0,+∞),(其中g(shù)≈1000cm/s2);

(1)當(dāng)t=0時,小球離開平衡位置的位移s是多少cm?
(2)若l=40cm,小球每1s能往復(fù)擺動多少次?要使小球擺動的周期是1s,則線的長度應(yīng)該調(diào)整為多少cm?
(3)某同學(xué)在觀察小球擺動時,用照相機(jī)隨機(jī)記錄了小球的位置,他共拍攝了300張照片,并且想估算出大約有多少張照片滿足小球離開平衡位置的距離(位移的絕對值)比t=0時小球離開平衡位置的距離。疄榱私鉀Q這個問題,他通過分析,將上述函數(shù)化簡為f(x)=3cos(x+$\frac{π}{3}$),x∈[0,2π).請幫他在圖2中畫出y=f(x)的圖象并解決上述問題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+3y≤3}\\{x-y≥1}\\{y≥0}\end{array}\right.$,則z=x+y的最大值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,則z=3x-4y的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知復(fù)數(shù)z=(1+i)(1+2i),其中i是虛數(shù)單位,則z的模是$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x+2y≤1\\ 2x+y≥-1\\ x-y≤0\end{array}\right.$,則z=3x-2y的最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若集合A={x|-2<x<1},B={x|x<-1或x>3},則A∩B=( 。
A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.由一個長方體和兩個$\frac{1}{4}$ 圓柱體構(gòu)成的幾何體的三視圖如圖,則該幾何體的體積為2+$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊答案