12.(1)設(shè)函數(shù)f(x)=|x-2|+|x+a|,若關(guān)于x的不等式f(x)≥3在R上恒成立,求實數(shù)a的取值范圍;
(2)已知正數(shù)x,y,z滿足x+2y+3z=1,求$\frac{3}{x}+\frac{2}{y}+\frac{1}{z}$的最小值.

分析 (1)關(guān)于x的不等式f(x)≥3在R上恒成立,等價于f(x)min≥3,即可求實數(shù)a的取值范圍;
(2)已知正數(shù)x,y,z滿足x+2y+3z=1,$\frac{3}{x}+\frac{2}{y}+\frac{1}{z}=(x+2y+3z)(\frac{3}{x}+\frac{2}{y}+\frac{1}{z})$,利用柯西不等式,即可求$\frac{3}{x}+\frac{2}{y}+\frac{1}{z}$的最小值.

解答 解:(1)f(x)=|x-2|+|x+a|≥|x-2-x-a|=|a+2|
∵原命題等價于f(x)min≥3,|a+2|≥3,∴a≤-5或a≥1.(5分)
(2)由于x,y,z>0,所以$\frac{3}{x}+\frac{2}{y}+\frac{1}{z}=(x+2y+3z)(\frac{3}{x}+\frac{2}{y}+\frac{1}{z})$$≥{(\sqrt{x}\sqrt{\frac{3}{x}}+\sqrt{2y}\sqrt{\frac{2}{y}}+\sqrt{3z}\sqrt{\frac{1}{z}})^2}={(\sqrt{3}+2+\sqrt{3})^2}=16+8\sqrt{3}$
當(dāng)且僅當(dāng)$\frac{x}{{\frac{3}{x}}}=\frac{2y}{{\frac{2}{y}}}=\frac{3z}{{\frac{1}{z}}}$,即$x:y:z=3:\sqrt{3}:1$時,等號成立.
∴$\frac{3}{x}+\frac{2}{y}+\frac{1}{z}$的最小值為$16+8\sqrt{3}$.(10分)

點評 本題考查不等式恒成立問題,考查柯西不等式的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集A={x|x≤9,x∈N*}集合B={x|0<x<7},則A∩B=( 。
A.{x|0<x<7}B.{x|1≤x≤6}C.{1,2,3,4,5,6}D.{7,8,9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)圓O1和圓O2是兩個定圓,動圓P與這兩個定圓都相切,則圓P的圓心軌跡可能是( 。
A.①③⑤B.②④⑤C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在數(shù)列{an}中,a1=2,an+1=3an,(n∈N*),則a4=54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若滿足條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-2≤0}\\{y≥a}\end{array}\right.$的整點(x,y)恰有9個,其中整點是指橫、縱坐標(biāo)都是整數(shù)的點,則整數(shù)a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知ξ~N(μ,δ2),若P(ξ>4)=P(ξ<2)成立,且P(ξ≤0)=0.2,則P(0<ξ<6)=0.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.公元前3世紀(jì),古希臘歐幾里得在《幾何原本》里提出:“球的體積(V)與它的直徑(d)的立方成正比”,此即V=kd3,與此類似,我們可以得到:
(1)正四面體(所有棱長都相等的四面體)的體積(V)與它的棱長(a)的立方成正比,即V=ma3;
(2)正方體的體積(V)與它的棱長(a)的立方成正比,即V=na3;
(3)正八面體(所有棱長都相等的八面體)的體積(V)與它的棱長(a)的立方成正比,即V=ta3;
那么m:n:t=(  )
A.1:6$\sqrt{2}$:4B.$\sqrt{2}$:12:16C.$\frac{\sqrt{2}}{12}$:1:$\sqrt{2}$D.$\sqrt{2}$:6:4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.當(dāng)函數(shù)f(x)=$\sqrt{3}$sinx+cosx-t(t∈R)在閉區(qū)間[0,2π]上,恰好有三個零點時,這三個零點之和為( 。
A.$\frac{10π}{3}$B.$\frac{8π}{3}$C.$\frac{7π}{3}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=sinωx+$\sqrt{3}$cosωx+1的最小正周期為π,當(dāng)x∈[m,n]時,f(x)至少有12個零點,則n-m的最小值為(  )
A.12πB.$\frac{7π}{3}$C.D.$\frac{16π}{3}$

查看答案和解析>>

同步練習(xí)冊答案