分析 令x-1=cosθ,y=sinθ,利用輔助角公式化簡(jiǎn)2x-y為2+$\sqrt{5}$cos(θ+α),其中,tanα=$\frac{1}{2}$,利用余弦函數(shù)的最值,得出結(jié)論.
解答 解:∵實(shí)數(shù)x,y滿足(x-1)2+y2=1,故可令x-1=cosθ,y=sinθ,
則2x-y=2+2cosθ-sinθ=2+$\sqrt{5}$($\frac{2}{\sqrt{5}}$cosθ-$\frac{1}{\sqrt{5}}$sinθ)=2+$\sqrt{5}$cos(θ+α),其中,tanα=$\frac{1}{2}$,
故2x-y的最大值為2+$\sqrt{4+1}$=2+$\sqrt{5}$,
故答案為:$2+\sqrt{5}$.
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,輔助角公式的應(yīng)用,余弦函數(shù)的最值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{25}$ | B. | -$\frac{24}{25}$ | C. | -$\frac{1}{25}$ | D. | $\frac{1}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 異面直線所成的角范圍是[0,π] | |
B. | 命題“?x∈R,2x>0”的否定是“?x∈R,2x>0” | |
C. | 若p∧q為假命題,則p,q均為假命題 | |
D. | x2>1成立的一個(gè)充分而不必要的條件是x>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{15}+\sqrt{3}}}{8}$ | B. | $\frac{{\sqrt{15}-\sqrt{3}}}{8}$ | C. | $\frac{{-\sqrt{15}+\sqrt{3}}}{8}$ | D. | $\frac{{-\sqrt{15}-\sqrt{3}}}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com