【題目】某校為了解高三年級不同性別的學(xué)生對體育課改上自習(xí)課的態(tài)度(肯定還是否定),進行了如下的調(diào)查研究.全年級共有名學(xué)生,男女生人數(shù)之比為,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為

1)求抽取的男學(xué)生人數(shù)和女學(xué)生人數(shù);

2)通過對被抽取的學(xué)生的問卷調(diào)查,得到如下列聯(lián)表:


否定

肯定

總計

男生


10


女生

30



總計




完成列聯(lián)表;

能否有的把握認為態(tài)度與性別有關(guān)?

3)若一班有名男生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度;二班有名女生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度.

現(xiàn)從這人中隨機抽取一男一女進一步詢問所持態(tài)度的原因,求其中恰有一人持肯定態(tài)度一人持否定態(tài)度的概率.

解答時可參考下面臨界值表:


0.10

0.05

0.025

0.010

0.005


2.706

3.841

5.024

6.635

7.879

【答案】(1)5550

(2) ①


否定

肯定

總計

男生

45

10

55

女生

30

20

50

總計

75

30

105

的把握認為態(tài)度與性別有關(guān)

(3)0.5

【解析】

試題解:(1)共抽取人, 1

男生人, 女生人, 3

2


否定

肯定

總計

男生

45

10

55

女生

30

20

50

總計

75

30

105

假設(shè): 學(xué)生對體育課改上自習(xí)課的態(tài)度與性別無關(guān)

因為,

所以 有的把握認為態(tài)度與性別有關(guān). 8

3)記一班被抽到的男生為持否定態(tài)度,持肯定態(tài)度;

二班被抽到的女生為,持否定態(tài)度,持肯定態(tài)度.

則所有抽取可能共有20種:,,;,,;,,,,;,,. 10

其中恰有一人持否定態(tài)度一人持肯定態(tài)度的有10種:,,,,,,,,. 11

從這人中隨機抽取一男一女,其中恰有一人持肯定態(tài)度一人持否定態(tài)度事件為,. 12

答:(1)抽取男生55人,女生50人;(2)有有的把握認為態(tài)度與性別有關(guān);

3)恰有一人持肯定態(tài)度一人持否定態(tài)度的概率為. 13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若上是減函數(shù),求實數(shù)的最大值;

2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若點的極坐標為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】奇函數(shù)fx)在R上存在導(dǎo)數(shù),當x0時,fx),則使得(x21fx)<0成立的x的取值范圍為(

A.(﹣1,0)∪(0,1B.(﹣,﹣1)∪(0,1

C.(﹣10)∪(1,+∞D.(﹣,﹣1)∪(1,+∞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)fx)=(3m22mx在(0+∞)上單調(diào)遞增,gx)=x24x+t.

1)求實數(shù)m的值;

2)當x[19]時,記fx),gx)的值域分別為集合A,B,設(shè)命題pxA,命題qxB,若命題q是命題p的必要不充分條件,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在等腰梯形中,,的中點.沿折起,使二面角,連接,得到四棱錐(如圖乙),的中點,是棱上一點.

1)求證:當的中點時,平面平面;

2)是否存在一點,使平面與平面所成的銳二面角為,若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.

1)求直線和曲線的極坐標方程;

2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市旅游管理部門為提升該市26個旅游景點的服務(wù)質(zhì)量,對該市26個旅游景點的交通、安全、環(huán)保、衛(wèi)生、管理五項指標進行評分.每項評分最低分0分,最高分100分.每個景點總分為這五項得分之和,根據(jù)考核評分結(jié)果,繪制交通得分與安全得分散點圖、交通得分與景點總分散點圖如圖

請根據(jù)圖中所提供的信息,完成下列問題:

1)若從交通得分排名前5名的景點中任取1個,求其安全得分大于90分的概率;

2)若從景點總分排名前6名的景點中任取3個,記安全得分不大于90分的景點個數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望;

3)記該市26個景點的交通平均得分為,安全平均得分為,寫出的大小關(guān)系?(只寫出結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.

1)求證:;

2)若上恒成立,求的最大值與的最小值.

查看答案和解析>>

同步練習(xí)冊答案