分析 (1)先證B1O⊥MAC,證明直線與平面垂直,關(guān)鍵要找到兩條相交直線與之都垂直.有時候題目中沒有現(xiàn)成的直線與直線垂直,需要我們先通過直線與平面垂直去轉(zhuǎn)化一下,如欲證B1O⊥AC,可以先證明AC⊥平面BB1O,從而B1O⊥AM;
(2)二面角的度量關(guān)鍵在于找出它的平面角,構(gòu)造平面角常用的方法就是三垂線法.
解答 解:(1)∵BB1⊥平面ABCD,OB⊥AC,
∴B1O⊥AC.設(shè)棱長為2
連接MO、MB1,則MO=$\sqrt{3}$,B1O=$\sqrt{6}$,MB1=3.
∵MO2+B1O2=MB12,∴∠MOB1=90°.
∴B1O⊥MO.
∵MO∩AC=O,∴B1O⊥平面MAC.
∴B1O⊥AM,
∴異面直線B1O與AM所成角為90°;
(2)作ON⊥AM于點N,連接B1N.
∵B1O⊥平面MAC,∴AM⊥平面B1ON.
∴B1N⊥AM.
∴∠B1NO就是二面角B1-MA-C的平面角.
∵AM=$\sqrt{5}$,CM=$\sqrt{5}$,∴AM=CM.
又O為AC的中點,∴OM⊥AC.則ON=OAsin∠MAO=$\frac{\sqrt{6}}{\sqrt{5}}$.
在Rt△B1ON中,tan∠B1NO=$\frac{{B}_{1}O}{ON}$=$\sqrt{5}$,
∴∠B1NO=arctan$\sqrt{5}$,即所求二面角的大小為arctan$\sqrt{5}$.
點評 證明直線與直線垂直常用的方法有勾股定理、通過直線與平面垂直轉(zhuǎn)化,三垂線定理,其中在立體幾何證明垂直的問題中,三垂線定理應(yīng)用很多,本題的兩問都是三垂線定理的應(yīng)用實例.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{{\sqrt{3}}}{2}$ | C. | -$\frac{{\sqrt{2}}}{2}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$-1 | B. | 1-2$\sqrt{2}$ | C. | 7 | D. | -7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (1,+∞) | C. | (-∞,-1) | D. | (-∞,0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com