15.已知tanα=2,則sin2α=( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.4

分析 由條件利用同角三角函數(shù)的基本關系,二倍角的正弦公式,求得要求式子的值.

解答 解:∵tanα=2,則sin2α=$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{2tanα}{{tan}^{2}α+1}$=$\frac{4}{4+1}$=$\frac{4}{5}$,
故選:A.

點評 本題主要考查同角三角函數(shù)的基本關系,二倍角的正弦公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.一個球與正三棱柱的三個側面和兩個底面都相切,已知這個球的體積為36π,那么該三棱柱的體積是162$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某單位從包括甲、乙在內(nèi)的5名應聘者中招聘2人,如果這5名應聘者被錄用的機會均等,則甲、乙兩人中至少有1人被錄用的概率是( 。
A.$\frac{3}{4}$B.$\frac{7}{10}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知0<θ<$\frac{π}{2}$,f(θ)=1+m+m($\frac{cosθ-1}{sinθ}$)+$\frac{sinθ-1}{cosθ}$(m>0),則使得f(θ)有最大值時的m的取值范圍是(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{3}$,3)C.[1,3]D.[$\frac{1}{4}$,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.己知集合A={x|2x≥1},B={x|x2-3x+2≥0},則A∩B=(  )
A.{x|x≤0}B.{x|1≤x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x<或x≥2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.曲線f(x)=$\sqrt{2}$sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,曲線f(x)的解析式為f(x)=$\sqrt{2}$sin(2x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年山西忻州一中高一上學期新生摸底數(shù)學試卷(解析版) 題型:解答題

如圖,拋物線軸交于兩點,直線軸交于點,與軸交于點,點軸上方的拋物線上一動點,過點軸于點,交直線于點.設點的橫坐標為

(1)求拋物線的解析式;

(2)若,求的值;

(3)若點是點關于直線的對稱點、是否存在點,使點落在軸上?若存在,請直接寫出相應的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.正三角形ABC的邊長為1,向量$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且0≤x,y≤1,$\frac{1}{2}$≤x+y≤1,則動點P的軌跡所形成的面積為$\frac{3\sqrt{3}}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設數(shù)列{an}的前n項和為Sn,已知a1=3,Sn+1=3Sn+3(n∈N*),
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{n}{{{a_{n+1}}-{a_n}}}$,求數(shù)列{bn}的前n項和為Tn,n∈N*

查看答案和解析>>

同步練習冊答案