已知函數(shù)f(x)=x2-2ax+4b2,a,b∈R.
(Ⅰ)若a從集合{3,4,5}中任取一個(gè)元素,b從集合{1,2,3}中任取一個(gè)元素,求方程f(x)=0有兩個(gè)不相等實(shí)根的概率;
(Ⅱ)若a從區(qū)間[0,2]中任取一個(gè)數(shù),b從區(qū)間[0,3]中任取一個(gè)數(shù),求方程f(x)=0沒(méi)有實(shí)根的概率.
考點(diǎn):幾何概型
專(zhuān)題:概率與統(tǒng)計(jì)
分析:分析:(Ⅰ)因?yàn)閍,b∈Z,且a∈A,b∈B,這是一個(gè)古典概型,設(shè)事件E為““方程f(x)=0有兩個(gè)不相等的實(shí)根”為事件A,分別算出基本事件個(gè)數(shù)和事件A中包含的基本事件,最后根據(jù)概率公式即可求得事件E的概率.
(2)由已知化簡(jiǎn)集合A和B,設(shè)事件“x∈A∩B”的概率為P1,這是一個(gè)幾何概型,測(cè)度是長(zhǎng)度,代入幾何概型的計(jì)算公式即可;
解答: 解:設(shè)“方程f(x)=0有兩個(gè)不相等的實(shí)根”為事件A,
當(dāng)a>0,b>0時(shí),方程f(x)=0有兩個(gè)不相等實(shí)根的充要條件為a>2b.
當(dāng)a>2b時(shí),a,b取值的情況有(3,1),(4,1),(5,1),(5,2),
即A包含的基本事件數(shù)為4,而基本事件總數(shù)為9.
∴方程f(x)=0有兩個(gè)不相等實(shí)根的概率P(A)=
4
9


(2)由已知a∈A=x|0<x<2},b∈B=x|0<x<3},(2分)
設(shè)事件“方程f(x)=0沒(méi)有實(shí)根”為事件B,
當(dāng)a>0,b>0時(shí),方程f(x)=0沒(méi)有實(shí)根的充要條件為a<2b,
這是一個(gè)幾何概型,則P(B)=
1
2
×1.5×3
2×3
=
3
8
點(diǎn)評(píng):本小題主要考查古典概型、幾何概型等基礎(chǔ)知識(shí).古典概型與幾何概型的主要區(qū)別在于:幾何概型是另一類(lèi)等可能概型,它與古典概型的區(qū)別在于試驗(yàn)的結(jié)果不是有限個(gè),簡(jiǎn)單地說(shuō),如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡(jiǎn)稱為幾何概型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示的程序框圖,則輸出結(jié)果S的值為( 。
A、-
1
16
B、-
1
12
C、
1
12
D、
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)Q是拋物線C1:y2=2px(p>0)上異于坐標(biāo)原點(diǎn)O的點(diǎn),過(guò)點(diǎn)Q與拋物線C2:y=2x2相切的兩條直線分別交拋物線C1于點(diǎn)A,B.若點(diǎn)Q的坐標(biāo)為(1,-6),求直線AB的方程及弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某小組有16名同學(xué),其中女同學(xué)有9名,現(xiàn)在要選3名同學(xué)去參加速寫(xiě)比賽.求
(1)至少有一名女同學(xué)的有多少種選法?
(2)男,女同學(xué)都有的選法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2分別為橢圓C的兩個(gè)焦點(diǎn),點(diǎn)B為其短軸的一個(gè)端點(diǎn),若△BF1F2為等邊三角形,則該橢圓的離心率為( 。
A、2
B、
3
C、
3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x=2是函數(shù)f(x)=mx3+nx2(m≠0)的一個(gè)極值點(diǎn)
(1)用含m的代數(shù)式表示n.
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x2lg
x-2
x+2
的圖象( 。
A、關(guān)于x軸對(duì)稱
B、關(guān)于原點(diǎn)對(duì)稱
C、關(guān)于直線y=x對(duì)稱
D、關(guān)于y軸對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A、B、C的對(duì)邊,已知∠A=60°,b=1,面積S=
3
,則
a+b+c
sinA+sinB+sinC
等于(  )
A、
2
39
3
B、
8
3
3
C、
26
3
3
D、
39
26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐底面是邊長(zhǎng)為2的正方形,側(cè)棱長(zhǎng)均為2,則側(cè)面與底面所成二面角的余弦值為(  )
A、
3
2
B、
3
6
C、
3
3
D、
6
3

查看答案和解析>>

同步練習(xí)冊(cè)答案