A. | $\frac{1}{2}$ | B. | -1 | C. | 0 | D. | 1 |
分析 求出函數(shù)的導(dǎo)數(shù),求得極值點和單調(diào)區(qū)間,可得極大值且為最大值,計算即可得到所求值.
解答 解:函數(shù)f(x)=3x-4x3的導(dǎo)數(shù)為f′(x)=3-12x2=3(1-4x2),
由f′(x)=0,可得x=$\frac{1}{2}$(-$\frac{1}{2}$舍去)
f(x)在[0,$\frac{1}{2}$)遞增,($\frac{1}{2}$,1)遞減,
可得f(x)在x=$\frac{1}{2}$處取得極大值,且為最大值1.
故選:D.
點評 本題考查函數(shù)的最值的求法,注意運用導(dǎo)數(shù),求得單調(diào)區(qū)間和極值、最值,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1]∪[1,+∞) | B. | [-1,0] | C. | [0,1] | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{3}{2},-\frac{3}{2e}})$ | B. | $[{-\frac{3}{2e},-\frac{5}{{3{e^2}}}})$ | C. | $[{-\frac{3}{2},-\frac{5}{{3{e^2}}}})$ | D. | $[{-2e,-\frac{3}{2e}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1),(0,0) | B. | {(-1,1),(0,0)} | C. | {x=-1或0,y=1或0} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x>0,x2<0 | B. | ?x>0,x2≤0 | C. | ?x0>0,x2<0 | D. | ?x0>0,x2≤0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com