15.函數(shù)$y=tan(x+\frac{π}{6})+2$的定義域是{x|x≠kπ+$\frac{π}{3}$,k∈Z}.

分析 由題意可得x+$\frac{π}{6}$≠kπ+$\frac{π}{2}$,k∈Z,解不等式即可得到所求定義域.

解答 解:函數(shù)$y=tan(x+\frac{π}{6})+2$有意義,
可得x+$\frac{π}{6}$≠kπ+$\frac{π}{2}$,k∈Z,
解得x≠kπ+$\frac{π}{3}$,k∈Z,
則定義域為{x|x≠kπ+$\frac{π}{3}$,k∈Z},
故答案為:{x|x≠kπ+$\frac{π}{3}$,k∈Z}.

點評 本題考查函數(shù)的定義域的求法,注意運用正切函數(shù)的定義域,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知空間四邊形ABCD的每條邊和對角線的長都等于1,點E、F分別是AB、AD的中點,則$\overrightarrow{ED}•\overrightarrow{FC}$等于( 。
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$\frac{{\sqrt{3}}}{8}$D.$-\frac{{\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=5sin(2x+α) 的圖象關(guān)于y軸對稱,則α=(  )
A.kπ,k∈zB.(2k+1)π,k∈zC.2kπ+$\frac{π}{2}$,k∈zD.kπ+$\frac{π}{2}$,k∈z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)拋物線y2=2px(p>0)被直線y=x-1截得弦長為$2\sqrt{6}$.
(1)求拋物線方程.
(2)以此弦為底邊,以x軸上的點P為頂點作三角形,當(dāng)此三角形的面積為$5\sqrt{3}$時,求點P點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.焦點在y軸上,且漸近線方程為y=±2x的雙曲線的方程是( 。
A.x2-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{y}^{2}}{4}$-x2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≤0}\\{x≥0}\\{y≤2}\end{array}\right.$,則$\frac{y}{x}$的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知O是邊長為$2\sqrt{2}$的正方形ABCD的中心,點E、F分別是AD、BC的中點,沿對角線AC把正方形ABCD折成直二面角D-AC-B;
(Ⅰ)求∠EOF的大;
(Ⅱ)求二面角E-OF-A的余弦值;
(Ⅲ)求點D到面EOF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(6,3),$\overrightarrow{c}$=m$\overrightarrow{a}$+$\overrightarrow$(m∈R),且$\overrightarrow{c}$與$\overrightarrow{a}$的夾角等于$\overrightarrow{c}$與$\overrightarrow$的夾角相等,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在正項數(shù)列{an}中,若a1=1,且對所有n∈N*滿足nan+1-(n+1)an=0,則a2017=( 。
A.1013B.1014C.2016D.2017

查看答案和解析>>

同步練習(xí)冊答案