【題目】我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書中,用圖①的數(shù)表列出了一些正整數(shù)在三角形中的一種幾何排列,俗稱“楊輝三角形”,該數(shù)表的規(guī)律是每行首尾數(shù)字均為,從第三行開始,其余的數(shù)字是它“上方”左右兩個數(shù)字之和,F(xiàn)將楊輝三角形中的奇數(shù)換成,偶數(shù)換成,得到圖②所示的由數(shù)字組成的三角形數(shù)表,由上往下數(shù),記第行各數(shù)字的和為,如,則____________

① ②

【答案】

【解析】

首先確定全部是1的行,在此基礎(chǔ)上確定33行和.

由題得,全行的數(shù)都為1的分別是:

第1行,第2行,第4行,第8行,第16行,第32行,

又因為數(shù)1,2,8,16,32,…的通項為

所以第5次全行的數(shù)都為1的是第32行,

則第33行為除了首尾為1,其余都為0,

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點分別為,,,上的點,的面積最大值為,直線交于兩點,且為坐標(biāo)原點)

1)求橢圓的方程;

2)求證:到直線的距離為定值,并求其定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標(biāo)準(zhǔn).對于高中男體育特長生而言,當(dāng)數(shù)值大于或等于20.5時,我們說體重較重,當(dāng)數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

1)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對指數(shù)有影響.

身高較矮

身高較高

合計

體重較輕

體重較重

合計

2)①從上述32名男體育特長生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:

編號

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求解釋變量(身高)對于預(yù)報變量(體重)變化的貢獻(xiàn)值(保留兩位有效數(shù)字)

編號

1

2

3

4

5

6

7

8

體重

57

58

53

61

66

57

50

66

殘差

0.1

0.3

0.9

②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認(rèn)在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.請重新根據(jù)最最小二乘法的思想與公式,求出男體育特長生的身高與體重的線性回歸方程.

(參考公式)

,,,.

(參考數(shù)據(jù))

,,.

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求證:

(2)若,恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,平面ABCD,平面BDE,GAB中點.

求證:平面BCF

,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

1)求的直角坐標(biāo)方程;

2)若的交于點,交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)在點處的切線斜率為0.

1)試用含有的式子表示,并討論的單調(diào)性;

2)對于函數(shù)圖象上的不同兩點,,如果在函數(shù)圖象上存在點,使得在點處的切線,則稱存在跟隨切線”.特別地,當(dāng)時,又稱存在中值跟隨切線”.試問:函數(shù)上是否存在兩點使得它存在中值跟隨切線,若存在,求出的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到定點的距離比到軸的距離多.

1)求動點的軌跡的方程;

2)設(shè),是軌跡上異于原點的兩個不同點,直線的傾斜角分別為,當(dāng)變化且時,證明:直線恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】密云某商場舉辦春節(jié)優(yōu)惠酬賓贈券活動,購買百元以上單件商品可以使用優(yōu)惠劵一張,并且每天購物只能用一張優(yōu)惠券.一名顧客得到三張優(yōu)惠券,三張優(yōu)惠券的具體優(yōu)惠方式如下:

優(yōu)惠券1:若標(biāo)價超過50元,則付款時減免標(biāo)價的10%;

優(yōu)惠券2:若標(biāo)價超過100元,則付款時減免20元;

優(yōu)惠券3:若標(biāo)價超過100元,則超過100元的部分減免18%

如果顧客需要先用掉優(yōu)惠券1,并且使用優(yōu)惠券1比使用優(yōu)惠券2、優(yōu)惠券3減免的都多,那么你建議他購買的商品的標(biāo)價可以是__________元.

查看答案和解析>>

同步練習(xí)冊答案