【題目】如圖,四邊形ABCD是菱形,平面ABCD,,平面BDE,G是AB中點(diǎn).
求證:平面BCF;
若,,求二面角的余弦值.
【答案】(1)詳見解析;(2).
【解析】
設(shè),連結(jié)OE,OF,推導(dǎo)出,平面ABCD,以O為原點(diǎn),OA,OB,OF所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能證明平面BCF.
求出平面ABE的法向量和平面BDE的法向量,利用向量法能求出二面角的余弦值.
設(shè),連結(jié)OE,OF,
四邊形ABCD是菱形,平面ABCD,,平面BDE,
,,平面ABCD,
設(shè),,,
以O為原點(diǎn),OA,OB,OF所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,
則0,,,b,,0,,0,,
b,,0,,,
設(shè)平面BCF的法向量為y,,
則,取,得c,,
,平面BCF,
平面BCF.
設(shè),,,,
,1,,,,
,,,
設(shè)平面ABE的法向量y,,
則,取,得,
設(shè)平面BDE的法向量y,,
則,取,得0,,
設(shè)二面角的平面角為,
則,二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年底,北京2022年冬奧組委會(huì)啟動(dòng)志愿者全球招募,僅一個(gè)月內(nèi)報(bào)名人數(shù)便突破60萬,其中青年學(xué)生約有50萬人.現(xiàn)從這50萬青年學(xué)生志愿者中,按男女分層抽樣隨機(jī)選取20人進(jìn)行英語水平測試,所得成績(單位:分)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下:
(Ⅰ)試估計(jì)在這50萬青年學(xué)生志愿者中,英語測試成績在80分以上的女生人數(shù);
(Ⅱ)從選出的8名男生中隨機(jī)抽取2人,記其中測試成績在70分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;
(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機(jī)分成若干組(每組人數(shù)不少于5000),并在每組中隨機(jī)選取個(gè)人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語測試成績在70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線與軸平行,求的極值;
(2)當(dāng)或時(shí),試討論方程實(shí)數(shù)根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且曲線y=f(x)在其與y軸的交點(diǎn)處的切線記為l1,曲線y=g(x)在其與x軸的交點(diǎn)處的切線記為l2,且l1∥l2.
(1)求l1,l2之間的距離;
(2)若存在x使不等式成立,求實(shí)數(shù)m的取值范圍;
(3)對(duì)于函數(shù)f(x)和g(x)的公共定義域中的任意實(shí)數(shù)x0,稱|f(x0)-g(x0)|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)f(x)和g(x)在其公共定義域內(nèi)的所有偏差都大于2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個(gè)交點(diǎn)T.
(I)求橢圓C的方程和點(diǎn)T的坐標(biāo);
(Ⅱ)O為坐標(biāo)原點(diǎn),與OT平行的直線l′與橢圓C交于不同的兩點(diǎn)A,B,直線l′與直線l交于點(diǎn)P,試判斷是否為定值,若是請(qǐng)求出定值,若不是請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書中,用圖①的數(shù)表列出了一些正整數(shù)在三角形中的一種幾何排列,俗稱“楊輝三角形”,該數(shù)表的規(guī)律是每行首尾數(shù)字均為,從第三行開始,其余的數(shù)字是它“上方”左右兩個(gè)數(shù)字之和,F(xiàn)將楊輝三角形中的奇數(shù)換成,偶數(shù)換成,得到圖②所示的由數(shù)字和組成的三角形數(shù)表,由上往下數(shù),記第行各數(shù)字的和為,如,則____________
① ②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 設(shè)橢圓的左焦點(diǎn)為,左頂點(diǎn)為,頂點(diǎn)為B.已知(為原點(diǎn)).
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)經(jīng)過點(diǎn)且斜率為的直線與橢圓在軸上方的交點(diǎn)為,圓同時(shí)與軸和直線相切,圓心在直線上,且,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)質(zhì)量檢驗(yàn)員為了檢測生產(chǎn)線上零件的質(zhì)量情況,從生產(chǎn)線上隨機(jī)抽取了個(gè)零件進(jìn)行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,求這個(gè)零件尺寸的中位數(shù)(結(jié)果精確到);
(2)若從這個(gè)零件中尺寸位于之外的零件中隨機(jī)抽取個(gè),設(shè)表示尺寸在上的零件個(gè)數(shù),求的分布列及數(shù)學(xué)期望;
(3)已知尺寸在上的零件為一等品,否則為二等品,將這個(gè)零件尺寸的樣本頻率視為概率. 現(xiàn)對(duì)生產(chǎn)線上生產(chǎn)的零件進(jìn)行成箱包裝出售,每箱個(gè). 企業(yè)在交付買家之前需要決策是否對(duì)每箱的所有零件進(jìn)行檢驗(yàn),已知每個(gè)零件的檢驗(yàn)費(fèi)用為元. 若檢驗(yàn),則將檢驗(yàn)出的二等品更換為一等品;若不檢驗(yàn),如果有二等品進(jìn)入買家手中,企業(yè)要向買家對(duì)每個(gè)二等品支付元的賠償費(fèi)用. 現(xiàn)對(duì)一箱零件隨機(jī)抽檢了個(gè),結(jié)果有個(gè)二等品,以整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值作為決策依據(jù),該企業(yè)是否對(duì)該箱余下的所有零件進(jìn)行檢驗(yàn)?請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com