11.已知數(shù)列{an},an=$\frac{n}{2}$+$\frac{1}{2}$(n∈N*),則數(shù)列{an}的前49項(xiàng)和S49=637.

分析 數(shù)列{an}滿足an=$\frac{n}{2}$+$\frac{1}{2}$(n∈N*),可得數(shù)列{an}是等差數(shù)列.利用求和公式即可得出.

解答 解:數(shù)列{an}滿足an=$\frac{n}{2}$+$\frac{1}{2}$(n∈N*),∴數(shù)列{an}是等差數(shù)列.
則數(shù)列{an}的前49項(xiàng)和S49=$\frac{49×(1+\frac{49}{2}+\frac{1}{2})}{2}$=637.
故答案為:637.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.《九章算術(shù)》商功章有題:一圓柱形谷倉(cāng),高1丈3尺$3\frac{1}{3}$寸,容納谷2000斛(1丈=10尺,1尺=10寸,斛為容積單位,1斛≈1.62立方尺,π≈3),則圓柱底面周長(zhǎng)約為5.4丈.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某校甲、乙兩支籃球隊(duì)各選3名隊(duì)員進(jìn)行定點(diǎn)投籃比賽,規(guī)定每名隊(duì)員投籃一次,投進(jìn)得10分,未投進(jìn)得0分,各隊(duì)的3名隊(duì)員得分之和為該隊(duì)總分.已知甲隊(duì)選出的3名隊(duì)員投進(jìn)的概率分別為$\frac{1}{2}$、$\frac{2}{3}$、$\frac{3}{4}$,乙隊(duì)選出的3名隊(duì)員投進(jìn)的概率均為$\frac{2}{3}$.設(shè)每名隊(duì)員投進(jìn)與否相互之間沒(méi)有影響,用ξ表示甲隊(duì)總分.
(1)求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望E(ξ).
(2)記“兩隊(duì)總分之和為40分且甲隊(duì)總分不低于乙隊(duì)總分”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{x+2y-4≥0}\end{array}\right.$,則z=x+3y的最大值為10..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知關(guān)于x的不等式x2-(m+1)x+m<0的解集為A,若集合A中恰好有4個(gè)整數(shù),則實(shí)數(shù)m的取值范圍是[-4,-3)∪(5,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在等差數(shù)列{an}中,a4=9,a7=3a2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{a{{\;}_{n}a}_{n+1}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.直線$\frac{x}{3}$-$\frac{y}{4}$=1在x軸上的截距是( 。
A.-3B.3C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在△ABC 中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,且acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3b}{2}$.
(Ⅰ)求證:a,b,c 成等差數(shù)列;
(Ⅱ)若B=$\frac{π}{3}$,b=4,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知m∈N*,則乘積m(m+1)(m+2)…(m+15)可表示為( 。
A.A${\;}_{m}^{15}$B.A${\;}_{m}^{16}$C.A${\;}_{m+15}^{15}$D.A${\;}_{m+15}^{16}$

查看答案和解析>>

同步練習(xí)冊(cè)答案