【題目】已知函數的圖象上有一點列,點在軸上的射影是,且 (且), .
(1)求證: 是等比數列,并求出數列的通項公式;
(2)對任意的正整數,當時,不等式恒成立,求實數的取值范圍.
(3)設四邊形的面積是,求證: .
科目:高中數學 來源: 題型:
【題目】設,函數,(為自然對數的底數),且函數的圖象與函數的圖象在處有公共的切線.
(Ⅰ)求的值;
(Ⅱ)討論函數的單調性;
(Ⅲ)證明:當時,在區(qū)間內恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點,且直線恰好通過橢圓的右焦點.
(1)求橢圓的標準方程;
(2)經過橢圓右焦點的直線和橢圓交于兩點,點在橢圓上,且,
其中為坐標原點,求直線的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業(yè)甲將經營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷量價格P(元)的關系如圖所示;③每月需各種開支2 000元.
(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合,若X是的子集,把X中所有元素的和稱為X的“容量”(規(guī)定空集的容量為0),若X的容量為奇(偶)數,則稱X為的奇(偶)子集.
(1)寫出S4的所有奇子集;
(2)求證:的奇子集與偶子集個數相等;
(3)求證:當n≥3時,的所有奇子集的容量之和等于所有偶子集的容量之和.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com