3.已知M,F(xiàn)為橢圓的$C:\frac{x^2}{20}+\frac{y^2}{16}=1$的上頂點(diǎn)和右焦點(diǎn),直線l與橢圓C交與A,B兩點(diǎn),且三角形△MAB的重心恰為F,則直線l的方程為6x-5y-28=0.

分析 設(shè)B(x1,y1),A(x2,y2),求出橢圓的右焦點(diǎn)為(2,0),利用三角形的重心坐標(biāo),推出x1+x2=6,y1+y2=-4,利用平方差法,求出直線的斜率,求出直線的中點(diǎn)坐標(biāo),利用點(diǎn)斜式求解直線方程.

解答 解:設(shè)B(x1,y1),A(x2,y2),橢圓的$C:\frac{x^2}{20}+\frac{y^2}{16}=1$的右焦點(diǎn)為(2,0)
∵點(diǎn)M(0,4),且橢圓右焦點(diǎn)F2恰為△ABC的重心
∴$\frac{{x}_{1}+{x}_{2}+0}{3}=2$,$\frac{{y}_{1}+{y}_{2}+4}{2}=0$
∴x1+x2=6,y1+y2=-4     ①
∵$\frac{{{x}_{1}}^{2}}{20}+\frac{{{y}_{1}}^{2}}{16}=1$,$\frac{{{x}_{2}}^{2}}{20}+\frac{{{y}_{2}}^{2}}{16}=1$
∴兩式相減得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{20}+\frac{({y}_{1}+{y}_{2})({y}_{1}+{y}_{2})}{16}=0$,
將①代入得:$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{6}{5}$,即直線l的斜率為k=$\frac{6}{5}$
∵直線l 過BA中點(diǎn)(3,-2)
∴直線l的方程為y+2=$\frac{6}{5}$(x-3)
故答案為:6x-5y-28=0.

點(diǎn)評 本題考查直線與橢圓方程的綜合應(yīng)用,點(diǎn)差法的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)數(shù)列{an}是首項(xiàng)為1公比為2的等比數(shù)列前n項(xiàng)和Sn,若log4(Sk+1)=4,則k=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在長方形OABC內(nèi)任取一點(diǎn)P(x,y),則點(diǎn)P落在陰影部分的概率為(  )
A.$1-\frac{3}{2e}$B.$1-\frac{1}{2e}$C.$1-\frac{2}{e}$D.$1-\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\frac{1+2i}{a+bi}$=2-i(i為虛數(shù)單位,a,b∈R),在|a-bi|=( 。
A.-iB.1C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足2$\sqrt{{S}_{n}}$=an+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;  
(Ⅱ)若bn=(an+1)•2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓 C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點(diǎn) (1,$\frac{{\sqrt{3}}}{2}$),離心率為$\frac{{\sqrt{3}}}{2}$,點(diǎn)A為橢圓C的右頂點(diǎn),直線l與橢圓相交于不同于點(diǎn) A 的兩個點(diǎn)P (x1,y1),Q (x2,y2).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng) $\overrightarrow{AP}$?$\overrightarrow{AQ}$=0時,求△OPQ面積的最大值;
(Ⅲ)若x1y2-x2y1≥2,求證:|OP|2+|OQ|2 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,以橢圓的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M,N.
(1)求橢圓C的方程;
(2)求$\overrightarrow{TM}$•$\overrightarrow{TN}$的最小值,并求此時圓T的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在正方形網(wǎng)格紙上,粗實(shí)線畫出的是某多面體的三視圖及其部分尺寸,若該多面體的頂點(diǎn)在同一球面上,則該球的表面積等于( 。
A.B.18πC.24πD.8$\sqrt{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“?x∈R,使得x2<1”的否定是(  )
A.?x∈R,都有x2<1B.?x∈R,使得x2≥1
C.?x∈R,都有x≤-1或x≥1D.?x∈R,使得x2>1

查看答案和解析>>

同步練習(xí)冊答案