12.已知扇形的中心角為2,扇形所在圓的半徑為r,若扇形的面積值與周長(zhǎng)值的差為f(r),求f(r)的最小值及對(duì)應(yīng)r的值.

分析 由題意寫出扇形的周長(zhǎng)與面積,得出函數(shù)f(r),
由二次函數(shù)的圖象求得f(r)的最小值.

解答 解:由題意可得扇形的周長(zhǎng)為C=2r+2r=4r,
扇形的面積為$S=\frac{1}{2}×2{r^2}={r^2}$,
則f(r)=S-C=r2-4r,r>0,
由二次函數(shù)的圖象知:
當(dāng)r=2時(shí),f(r)取得最小值為22-4×2=-4.

點(diǎn)評(píng) 本題考查了扇形的周長(zhǎng)與面積公式的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,求:
(1)($\overrightarrow{a}$-2$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$);
(2)|$\overrightarrow{a}$+$\overrightarrow$|;
(3)|3$\overrightarrow{a}$-4$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=3sin3x.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知cosα=$\frac{1}{3}$,α∈(0,π),則cos($\frac{3}{2}$π+2α)等于( 。
A.$-\frac{{4\sqrt{2}}}{9}$B.$-\frac{7}{9}$C.$\frac{4\sqrt{2}}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=1,AB=AD=2,E,F(xiàn)分別是棱AB,BC的中點(diǎn),證明A1,C1,F(xiàn),E四點(diǎn)共面,并求點(diǎn)B到平面A1EF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=sinx+$\sqrt{3}$cosx的值域?yàn)閇-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.一輛汽車在一條水平的公路上向正西行駛,到A處時(shí)測(cè)得公路北側(cè)遠(yuǎn)處一山頂D在西偏北15.的方向上,行駛5km后到達(dá)B處,測(cè)得此山頂在西偏北45.的方向上,此時(shí)看山頂?shù)难鼋菫?0,求此山CD的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.遞減等差數(shù)列{an}的前n項(xiàng)和Sn滿足S5=S10,則滿足Sn>0成立的最大的正整數(shù)n的值為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{ln({x+1})({x>0})}\\{\frac{1}{2}x+1({x≤0})}\end{array}}\right.$,如果存在實(shí)數(shù)s,t,其中s<t,使得f(s)=f(t),則t-s的取值范圍是( 。
A.[3-2ln2,2)B.[3-2ln2,e-1]C.[e-1,2]D.[0,e+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案