2.在x∈[0,2π]上滿(mǎn)足cosx≤$\frac{1}{2}$的x的取值范圍是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{5π}{3}$]C.[$\frac{π}{3}$,$\frac{2π}{3}$]D.[$\frac{5π}{3}$,π]

分析 根據(jù)余弦函數(shù)的圖象和性質(zhì),即可求出結(jié)果.

解答 解:當(dāng)cosx≤$\frac{1}{2}$時(shí),x∈[$\frac{π}{3}$+2kπ,$\frac{5π}{3}$+2kπ](k∈Z),
又∵x∈[0,2π],
∴滿(mǎn)足cosx≤$\frac{1}{2}$的x的取值范圍是[$\frac{π}{3}$,$\frac{5π}{3}$].
故選:B.

點(diǎn)評(píng) 本題考查了任意角的三角函數(shù)的定義與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(理)試卷(解析版) 題型:解答題

閱讀下列有關(guān)光線(xiàn)的入射與反射的兩個(gè)事實(shí)現(xiàn)象,現(xiàn)象(1):光線(xiàn)經(jīng)平面鏡反射滿(mǎn)足入射角與反射角相等(如圖1);現(xiàn)象(2):光線(xiàn)從橢圓的一個(gè)焦點(diǎn)出發(fā)經(jīng)橢圓反射后通過(guò)另一個(gè)焦點(diǎn)(如圖2).試結(jié)合上述事實(shí)現(xiàn)象完成下列問(wèn)題:

(1)有一橢圓型臺(tái)球桌,長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為.將一放置于焦點(diǎn)處的桌球擊出,經(jīng)過(guò)球桌邊緣的反射(假設(shè)球的反射完全符合現(xiàn)象(2)后第一次返回到該焦點(diǎn)時(shí)所經(jīng)過(guò)的路程記為,求的值(用表示);

(2)結(jié)論:橢圓上任一點(diǎn)處的切線(xiàn)的方程為.記橢圓的方程為

①過(guò)橢圓的右準(zhǔn)線(xiàn)上任一點(diǎn)向橢圓引切線(xiàn),切點(diǎn)分別為,求證:直線(xiàn)恒過(guò)一定點(diǎn);

②設(shè)點(diǎn)為橢圓上位于第一象限內(nèi)的動(dòng)點(diǎn),為橢圓的左右焦點(diǎn),點(diǎn)的內(nèi)心,直線(xiàn)軸相交于點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{∁}_{R}Q}\end{array}\right.$被稱(chēng)為狄利克雷函數(shù),其中R為實(shí)數(shù)集,Q為有理數(shù)集,則關(guān)于函數(shù)f(x)有如下四個(gè)命題:
①函數(shù)f(x)是偶函數(shù);
②f(f(x))=0;
③任取一個(gè)不為零的有理數(shù)T,f(x+T)=f(x)對(duì)任意的x∈R恒成立;
④不存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),
使得△ABC 為等邊三角形.其中為真命題的是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若用如圖的程序框圖求數(shù)列{$\frac{n+1}{n}$}的前100項(xiàng)和,則賦值框和判斷框中可分別填入( 。
A.S=S+$\frac{i+1}{i}$,i≥100?B.S=S+$\frac{i+1}{i}$,i≥101?C.S=S+$\frac{i}{i-1}$,i≥100?D.S=S+$\frac{i}{i-1}$,i≥101?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)已知函數(shù)y=f(x)的定義域?yàn)閇-1,2],求函數(shù)y=f(1-x2)的定義域.
(2)已知函數(shù)y=f(2x-3)的定義域?yàn)椋?2,1],求函數(shù)y=f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)y=4cosx-1,x∈[0,$\frac{π}{2}$],此函數(shù)的最小值為-1;最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知復(fù)數(shù)z滿(mǎn)足(z+1)•i=1-i,則z=(  )
A.-2+iB.2+iC.-2-iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若f(x)=ex+ae-x為偶函數(shù),則f(x-1)<$\frac{{e}^{2}+1}{e}$的解集為( 。
A.(2,+∞)B.(0,2)C.(-∞,2)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知各項(xiàng)為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn且滿(mǎn)足an2+2an=4Sn
(Ⅰ)數(shù)列{an}的通項(xiàng)an;
(Ⅱ)令bn=$\frac{n+2}{{{2^n}{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案