分析 作出圖形,結(jié)合圖形分別求出兩圓圓心到相交弦的距離,由此能求出兩圓的圓心距.
解答 解:如圖,半徑分別為5,6的兩個圓O1,O2相交于A,B兩點(diǎn),AB=8,
兩個圓所在平面EFCD⊥平面MNCD,
取AB中點(diǎn)O,連結(jié)OO1,OO2,則OO1⊥OO2,
OO1=$\sqrt{{O}_{1}{A}^{2}-O{A}^{2}}$=$\sqrt{25-16}$=3,
OO2=$\sqrt{{O}_{2}{A}^{2}-O{A}^{2}}$=$\sqrt{36-16}$=2$\sqrt{5}$,
∴它們的圓心距|O1O2|=$\sqrt{O{{O}_{1}}^{2}+O{{O}_{2}}^{2}}$=$\sqrt{9+20}$=$\sqrt{29}$.
故答案為:$\sqrt{29}$.
點(diǎn)評 本題考查兩圓圓心距的求法,考查推理論證能力、運(yùn)算求解能力、空間思維能力,考查數(shù)形結(jié)合思想、轉(zhuǎn)化化歸思想,考查運(yùn)用意識,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{2}}}{3}$ | B. | -$\frac{1}{2}$ | C. | 0 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 只需要按開關(guān)A,C可以將四盞燈全部熄滅 | |
B. | 只需要按開關(guān)B,C可以將四盞燈全部熄滅 | |
C. | 按開關(guān)A,B,C可以將四盞燈全部熄滅 | |
D. | 按開關(guān)A,B,C無法將四盞燈全部熄滅 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\sqrt{3}≤u≤\sqrt{3}$ | B. | $u≥\sqrt{3}$或$u≤-\sqrt{3}$ | C. | $-\frac{{\sqrt{3}}}{3}≤u≤\frac{{\sqrt{3}}}{3}$ | D. | $u≥\frac{{\sqrt{3}}}{3}$或$u≤-\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com