6.若集合P={x|4<x<10},Q={x|3<x<7},則P∪Q等于( 。
A.{x|3<x<7}B.{x|3<x<10}C.{x|3<x<4}D.{x|4<x<7}

分析 直接利用集合的并集的運(yùn)算法則,求出P∪Q即可.

解答 解:集合P={x|4<x<10},Q={x|3<x<7},則P∪Q={x|3<x<10},
故選:B.

點(diǎn)評(píng) 本題考查集合的并集的基本運(yùn)算,考查基本知識(shí)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列結(jié)論中,正確的是( 。
A.“x>2”是“x2-2x>0”成立的必要條件
B.已知向量$\overrightarrow{a}$,$\overrightarrow$,則“$\overrightarrow{a}$∥$\overrightarrow$”是“$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{0}$”的充要條件
C.命題“p:?x∈R,x2≥0”的否定形式為“¬p:?x0∈R,x02≥0”
D.命題“若x2=1,則x=1”的逆否命題為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知焦點(diǎn)在y軸上的橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),離心率為$\frac{\sqrt{3}}{2}$,且過(guò)點(diǎn)($\frac{\sqrt{2}}{2}$,$\sqrt{2}$),不過(guò)橢圓頂點(diǎn)的動(dòng)直線l:y=kx+m與橢圓C交于A、B兩點(diǎn).求:
(1)橢圓C的標(biāo)準(zhǔn)方程;
(2)求三角形AOB面積的最大值,并求取得最值時(shí)直線OA、OB的斜率之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若函數(shù)y=f(x)的圖象與函數(shù)y=3x+a的圖象關(guān)于直線y=-x對(duì)稱,且f(-1)+f(-3)=3,則實(shí)數(shù)a等于(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.圖為一塊平行四邊形園地ABCD,經(jīng)測(cè)量,AB=20米,BC=10米,∠ABC=120°,擬過(guò)線段AB上一點(diǎn)E設(shè)計(jì)一條直路EF(點(diǎn)F在四邊形ABCD的邊上,不計(jì)路的寬度),將該園地分為面積之比為3:1的左、右兩部分分別種植不同的花卉,設(shè)EB=x,EF=y(單位:米)
(1)當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),試確定點(diǎn)E的位置;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并確定點(diǎn)E、F的位置,使直路EF長(zhǎng)度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.記<n>表示正整數(shù)n的個(gè)位數(shù),設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,an=<2n>,bn=an+2n,則S4n=24n+1+20n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1的左右焦點(diǎn)分別為F1、F2,點(diǎn)P為雙曲線上任意一點(diǎn),點(diǎn)Q是以點(diǎn)P為圓心,|PF1|為半徑的圓上的任意點(diǎn),那么|QF2|( 。
A.有最小值8B.有最大值8C.有最小值4$\sqrt{5}$D.有最大值4$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知過(guò)點(diǎn)(0,-$\sqrt{2}$)的直線l與雙曲線x2-y2=1有兩個(gè)交點(diǎn),求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,已知$\overrightarrow{BA}$•$\overrightarrow{BC}$=8,sinB=cosA•sinC,S△ABC=3,D為線段AB上的一點(diǎn),且$\overrightarrow{CD}$=m•$\frac{\overrightarrow{CA}}{|\overrightarrow{CA}|}$+n•$\frac{\overrightarrow{CB}}{|\overrightarrow{CB}|}$,則mn的最大值為( 。
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案