8.直線與圓相切時,圓心與切點(diǎn)連線與直線垂直,由類比推理可知,平面與球相切時的結(jié)論為球心與切點(diǎn)連線與平面垂直.

分析 根據(jù)類比的定義,從直線想到平面,從圓想到球,即從平面類比到空間.

解答 解:從直線類比到平面,從圓類比到球,即從平面類比到空間,
故圓心類比球心,直線類比平面,
故答案為:球心與切點(diǎn)連線與平面垂直.

點(diǎn)評 本題主要考查學(xué)生的知識量和對知識的遷移類比的能力.類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).但類比推理的結(jié)論不一定正確,還需要經(jīng)過證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.sin$\frac{5π}{3}$等于( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=3sin2x-2$\sqrt{3}{cos^2}$x,下列結(jié)論中錯誤的序號是③.
 ①函數(shù)f(x)的最小正周期為π
 ②函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{3}$對稱
 ③函數(shù)f(x)的圖象可由g(x)=2sin2x-1的圖象向右平移$\frac{π}{6}$個單位得到
 ④函數(shù)f(x)在區(qū)間$[{0_{\;}}{,_{\;}}\frac{π}{4}]$上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a=30.7,b=0.72016,c=log2017$\frac{1}{2016}$,則(  )
A.c>b>aB.c>a>bC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a,b,c為三條不同的直線,給出如下兩個命題:①若a⊥b,b⊥c,則a∥c;②若a∥b,b⊥c,則a⊥c.試類比以上兩個命題,寫出一個正確的命題:設(shè)α、β、γ為三個不同的平面,若α∥β,β⊥γ,則α⊥γ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示的程序框圖中,若f(x)=x2,g(x)=x,且h(x)≥m恒成立,則m的最大值是( 。
A.4B.3C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在區(qū)間[0,5]上隨機(jī)取一個數(shù)a,則2a的值介于1到4之間的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.關(guān)于實(shí)數(shù)x的不等式|x-1|+|x-3|≤a2-2a-1的解集為∅,則實(shí)數(shù)a的取值范圍是( 。
A.1<a<3B.-1<a<3C.-1<a<2D.a<-1,或a>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C:(x-m)2+(y+m-3)2=r2(m∈R,r>0).
(1)若圓C在不等式組$\left\{\begin{array}{l}{x-2y≤0}\\{2x-y+2≥0}\end{array}\right.$所表示的平面區(qū)域內(nèi),求r的取值范圍;
(2)當(dāng)r=2時,設(shè)EF、GH為圓C的兩條互相垂直的弦,垂足為M(m+1,$\sqrt{2}$-m+3),求四邊形EGFH面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案