13.正方體ABCD-A1B1C1D1中,8個(gè)頂點(diǎn)任意兩點(diǎn)連線與AB1所成角大于45°的直線有(  )
A.12條B.14條C.16條D.18條

分析 由題意畫出圖形,然后分三類分析得答案.

解答 解:如圖,8個(gè)頂點(diǎn)任意兩點(diǎn)連線共有${C}_{8}^{2}=28$條.

有4條棱與AB1垂直,8條與AB1成45°角;
12條對(duì)角線去掉其本身和一條與其平行的,其余10條與其成60°或90°,
有2條體對(duì)角線與其垂直,兩條與其所成角為銳角.
故8個(gè)頂點(diǎn)任意兩點(diǎn)連線與AB1所成角大于45°的直線有16條.
故選:C.

點(diǎn)評(píng) 本題考查棱柱的結(jié)構(gòu)特征,考查空間中直線與直線的位置關(guān)系,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某海灣擁有世界上最大的海潮,其高低水位之差可達(dá)到15m,假設(shè)在該海灣某一固定點(diǎn),大海水深d(單位:m)與午夜后的時(shí)間t(單位:h)的關(guān)系由函數(shù)d(t)=10+4cost表示,求下列時(shí)刻潮水的速度(精確到0.01):
(1)上午6:00;(2)上午9:00;(3)中午12:00;(4)下午6:00.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若對(duì)于任意的實(shí)數(shù)t,函數(shù)f(x)=(x-t)3+(x-et3-3ax在R上都是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-$∞,\frac{1}{2}$]B.($-∞,\frac{1}{2}$)C.($-∞,\frac{\sqrt{2}}{2}$]D.($-∞,\frac{\sqrt{2}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,其定義域和值域分別與y=x${\;}^{-\frac{1}{2}}$的定義域和值域相同的是( 。
A.y=|x|B.y=3x
C.$y={a^{{{log}_a}x}}(a>0,a≠1)$D.y=lgx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)等差數(shù)列{an}的前項(xiàng)和為Sn,且a2=4,S6=42,數(shù)列{bn}的前項(xiàng)和為Tn,且bn=$\frac{1}{S_n}$.
(Ⅰ) 求an,Sn;
(Ⅱ) 證明:$\frac{1}{2}$≤Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某商品的銷售額y(萬元)與廣告費(fèi)x(萬元)存在線性相關(guān),根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,3,…,n)用最小二乘法建立的回歸方程為y=10+0.4x,則下列結(jié)論成立的是(  )
A.y與x具有負(fù)的線性相關(guān)關(guān)系
B.若r表示變量與之間相關(guān)系數(shù),則r=0.4
C.當(dāng)廣告費(fèi)為1萬元時(shí),商品的銷售額為10.4萬元
D.當(dāng)廣告費(fèi)為1萬元時(shí),商品的銷售額為10.4萬元左右

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1-x}{ax}$+lnx.
(1)討論f(x)的單調(diào)性;
(2)若對(duì)?x1,x2∈[1,+∞)且x1≠x2,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,求實(shí)數(shù)a的取值范圍;
(3)證明2lnn!≥n+lnn-2+$\frac{1}{n}$(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,則輸出的s值為( 。
A.-$\frac{1}{2}$B.$\frac{2}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在數(shù)列{an}中,an+1=4an-3n2+1,a1=1,n∈N*.求an

查看答案和解析>>

同步練習(xí)冊(cè)答案