9.已知命題p:實(shí)數(shù)x滿足${x^2}-2x-8≤C_n^0-C_n^1+C_n^2-C_n^3+…+{(-1)^n}C_n^n$;命題q:實(shí)數(shù)x滿足|x-2|≤m(m>0).
(1)當(dāng)m=3時,若“p且q”為真,求實(shí)數(shù)x的取值范圍;
(2)若“非p”是“非q”的必要不充分條件,求實(shí)數(shù)m的取值范圍.

分析 (1)先轉(zhuǎn)化p,q,由p且q為真,得p真q真,解出x
(2)由“非p”是“非q”的必要不充分條件得p是q的充分不必要條件,根據(jù)數(shù)軸列出不等式解出m.

解答 解:(1)∵$C{\;}_n^0-C_n^1+C_n^2-C_n^3+…+{(-1)^n}C_n^n={(1-1)^n}=0$------------------------------------------(1分)
則${x^2}-2x-8≤C_n^0-C_n^1+C_n^2-C_n^3+…+{(-1)^n}C_n^n$等價為x2-2x-8≤0,得-2≤x≤4,
若p真:-2≤x≤4,當(dāng)m=3時,若q真:由|x-2|≤3得-3≤x-2≤3,得-1≤x≤5,
∵p且q為真,∴$\left\{\begin{array}{l}{-2≤x≤4}\\{-1≤x≤5}\end{array}\right.$,得-1≤x≤4,
∴實(shí)數(shù)x的取值范圍為:[-1,4]-------------------------(5分)
(2)∵¬p是¬q的必要不充分條件,
∴p是q的充分不必要條件---------------------(6分)
∵若q真:2-m≤x≤2+m,
∴$\left\{\begin{array}{l}{2-m≤-2}\\{4≤2+m}\end{array}\right.$,且等號不同時取得(不寫“且等號不同時取得”,寫檢驗(yàn)也可)
得$\left\{\begin{array}{l}{m≥4}\\{m≥2}\end{array}\right.$
∴m≥4.------------------------------------------------------------------(10分)

點(diǎn)評 本題主要考查復(fù)合命題真假關(guān)系的應(yīng)用以及充分條件和必要條件的判斷,根據(jù)條件求出命題p,q的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)a,b表示不同的直線,α,β表示不同的平面,則下列說法正確的是( 。
A.若a∥α,b∥β,α∥β,則a∥b
B.若a∥α,b∥β,a∥b,則α∥β
C.若a,b是異面直線,a∥α,b∥β,a?β,b?α,則α∥β
D.若a,b是異面直線,a∥α,b∥β,a?β,b?α,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.lg10+lne-lg0.01=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圓ρ=2cosθ與圓ρ=sinθ交于O,A兩點(diǎn).
(Ⅰ)求直線OA的斜率;
(Ⅱ)過O點(diǎn)作OA的垂線分別交兩圓于點(diǎn)B,C,求|BC|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人名幣儲蓄存款(年底余額)如表
年份20112012201320142015
時間代號t12345
儲蓄存款y(千億元)567810
(Ⅰ)求y關(guān)于t的回歸方程$\widehaty=\widehatbt+\widehata$;
(Ⅱ)用所求回歸直線方程預(yù)測該地區(qū)2016年(t=6)的人民幣儲蓄存款.
附:回歸方程$\widehaty=\widehatbt+\widehata$,$\widehatb=\frac{{\sum_{i=1}^n{{t_i}{y_i}-n\overline t\overline y}}}{{\sum_{i=1}^n{t_i^2-n{{\overline t}^2}}}}$,$\widehata=\overline y-\widehatb\overline t$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系中.直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-5+\frac{\sqrt{2}}{2}t}\\{y=-1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4cosθ.
(1)寫出直線l和曲線C的普通方程;
(2)已知點(diǎn)P為曲線C上的動點(diǎn),求P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$f(x)=|x|+\frac{1}{|x|}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1:ρ2-4ρcosθ+3=0,θ∈[0,2π],曲線C2:ρ=$\frac{3}{{4sin({\frac{π}{6}-θ})}}$,θ∈[0,2π].
(Ⅰ)求曲線C1的一個參數(shù)方程;
(Ⅱ)若曲線C1和曲線C2相交于A、B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某商場對品牌電視的日銷售量(單位:臺)進(jìn)行最近100天的統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如表:
日銷售量1234
頻數(shù)A40B5
頻率$\frac{2}{5}$C$\frac{3}{20}$D
(1)求出表中A、B、C、D的值;
(2)①試對以上表中的銷售x與頻數(shù)Y的關(guān)系進(jìn)行相關(guān)性檢驗(yàn),是否有95%把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,請說明理由;
②若以上表頻率為概率,且每天的銷售量相互獨(dú)立,已知每臺電視機(jī)的銷售利潤為200元,X表示該品牌電視機(jī)每天銷售利潤的和(單位:元),求X數(shù)學(xué)期望.
參考公式:
相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i}-n\overline{x}•\overline{y})}{\sqrt{(\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2})(\sum_{i=1}^{n}{y}^{2}-n{\overline{y}}^{2})}}$
參考數(shù)據(jù):$\sqrt{190}$≈13.8,$\sum_{i=1}^{4}{x}_{i}{y}_{i}-4\overline{x}•\overline{y}$=-65,$\sum_{i=1}^{4}{x}_{i}^{2}-4{\overline{x}}^{2}$=5,$\sum_{i=1}^{4}{y}_{i}^{2}-4{\overline{y}}^{2}$=950,其中xi為日銷售量,yi是xi所對應(yīng)的頻數(shù).
相關(guān)性檢驗(yàn)的臨界值表
n-2 小概率
 0.050.01 
 1 0.9971.000 
 2 0.950 0.990
 3 0.8780.959

查看答案和解析>>

同步練習(xí)冊答案