【題目】對(duì)某校高三年級(jí)100名學(xué)生的視力情況進(jìn)行統(tǒng)計(jì)(如果兩眼視力不同,取較低者統(tǒng)計(jì)),得到如圖所示的頻率分布直方圖,已知從這100人中隨機(jī)抽取1人,其視力在的概率為.

1)求a,b的值;

2)若報(bào)考高校A專業(yè)的資格為:任何一眼裸眼視力不低于5.0,已知在中有的學(xué)生裸眼視力不低于5.0.現(xiàn)用分層抽樣的方法從中抽取4名同學(xué),設(shè)這4人中有資格(僅考慮視力)考A專業(yè)的人數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望.

【答案】1;(2)分布列見解析,期望值為.

【解析】

1)根據(jù)“從這100人中隨機(jī)抽取1人,其視力在的概率為”求得,根據(jù)頻率之和為列方程求得.

2)首先求得中分別抽取的人數(shù),再按照分布列的計(jì)算方法求得分布列并求得數(shù)學(xué)期望.

1)由于“從這100人中隨機(jī)抽取1人,其視力在的概率為”所以.,解得.

2的頻率比為,所以在中抽取人,在中抽取. 的人數(shù)為,其中視力以上有人,視力以下有.的人數(shù)為.的所有可能取值為,且

,,.所以分布列為

1

2

3

4

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線a0,b0)的右焦點(diǎn)為F30),左、右頂點(diǎn)分別為M,N,點(diǎn)PE在第一象限上的任意一點(diǎn),且滿足kPMkPN8

1)求雙曲線E的方程;

2)若直線PN與雙曲線E的漸近線在第四象限的交點(diǎn)為A,且△PAF的面積不小于3,求直線PN的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓將圓的圓周分為四等份,且橢圓的離心率為.

1)求橢圓的方程;

2)若直線與橢圓交于不同的兩點(diǎn),且的中點(diǎn)為,線段的垂直平分線為,直線軸交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),,則函數(shù)上的所有零點(diǎn)之和為(

A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)

等邊△ABC的邊長為3,點(diǎn)DE分別為AB,AC上的點(diǎn),且滿足(如圖①),將△ADE沿DE折起到△A1DE的位置,使二面角A1DEB成直二面角,連接A1BA1C(如圖②).

1)求證:A1D⊥平面BCED;

2)在線段BC上是否存在點(diǎn)P(不包括端點(diǎn)),使直線PA1與平面A1BD所成的角為60°?若存在,求出A1P的長,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (a是常數(shù)且a>0).對(duì)于下列命題:

①函數(shù)f(x)的最小值是-1;

②函數(shù)f(x)在R上是單調(diào)函數(shù);

③若f(x)>0在上恒成立,則a的取值范圍是a>1;

④對(duì)任意的x1<0,x2<0且x1x2,恒有

.

其中正確命題的序號(hào)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出曲線的直角坐標(biāo)方程,并求時(shí)直線的普通方程;

(2)直線和曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是橢圓的左、右焦點(diǎn),已知橢圓的長軸為是橢圓上一動(dòng)點(diǎn),的最大值為.

1)求橢圓的方程;

2)過點(diǎn)的直線交橢圓兩點(diǎn),為橢圓上一點(diǎn),為坐標(biāo)原點(diǎn),且滿足,其中,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建造一個(gè)矩形游泳池及左右兩側(cè)兩個(gè)大小相同的矩形休息區(qū),其中半圓的圓心為,半徑為,矩形的一邊上,矩形的一邊上,點(diǎn)在圓周上,在直徑上,且,設(shè).若每平方米游泳池的造價(jià)與休息區(qū)造價(jià)之比為.

1)記游泳池及休息區(qū)的總造價(jià)為,求的表達(dá)式;

2)為進(jìn)行投資預(yù)算,當(dāng)為何值時(shí),總造價(jià)最大?并求出總造價(jià)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案