【題目】2019年12月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數(shù)隨時間變化的散點圖.
為了預測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時間變量t的值依次1,2,…,10)建立模型和.
(1)根據(jù)散點圖判斷,與哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)
(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)以下是1月25日至1月29日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:
時間 | 1月25日 | 1月26日 | 1月27日 | 1月28日 | 1月29日 |
累計確診人數(shù)的真實數(shù)據(jù) | 1975 | 2744 | 4515 | 5974 | 7111 |
(。┊1月25日至1月27日這3天的誤差(模型預測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?
(ⅱ)2020年1月24日在人民政府的強力領(lǐng)導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預測數(shù)據(jù),則認為防護措施有效,請判斷預防措施是否有效?
附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.
參考數(shù)據(jù):其中,.
5.5 | 390 | 19 | 385 | 7640 | 31525 | 154700 | 100 | 150 | 225 | 338 | 507 |
科目:高中數(shù)學 來源: 題型:
【題目】定義:平面內(nèi)兩個分別以原點和兩坐標軸為對稱中心和對稱軸的橢圓E1,E2,它們的長短半軸長分別為a1,b1和a2,b2,若滿足a2=a1k,b2=b1k(k∈Z,k≥2),則稱E2為E1的k級相似橢圓,己知橢圓E1: =1,E2為E1的2級相似橢圓,且焦點共軸,E1與E2的離心率之比為2:.
(Ⅰ)求E2的方程;
(Ⅱ)已知P為E2上任意一點,過點P作E1的兩條切線,切點分別為A(x1,y1)、B(x2,y2).
①證明:E1在A(x1,y1)處的切線方程為=1;
②是否存在一定點到直線AB的距離為定值,若存在,求出該定點和定值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數(shù)方程是(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是.
(1)證明:直線l與曲線C相切;
(2)設(shè)直線l與x軸、y軸分別交于點A,B,點P是曲線C上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的極大值為,其中為自然對數(shù)的底數(shù).
(1)求實數(shù)的值;
(2)若函數(shù),對任意,恒成立.
(i)求實數(shù)的取值范圍;
(ii)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是邊長為的正方形,是正三角形,為線段的中點,點為底面內(nèi)的動點,則下列結(jié)論正確的是( )
A.若時,平面平面
B.若時,直線與平面所成的角的正弦值為
C.若直線和異面時,點不可能為底面的中心
D.若平面平面,且點為底面的中心時,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新高考,取消文理科,實行“”,成績由語文、數(shù)學、外語統(tǒng)一高考成績和自主選考的3門普通高中學業(yè)水平考試等級性考試科目成績構(gòu)成.為了解各年齡層對新高考的了解情況,隨機調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)查結(jié)果制成下表:
年齡(歲) | ||||||
頻數(shù) | 5 | 15 | 10 | 10 | 5 | 5 |
了解 | 4 | 12 | 6 | 5 | 2 | 1 |
(1)分別估計中青年和中老年對新高考了解的概率;
(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關(guān)?
了解新高考 | 不了解新高考 | 總計 | |
中青年 | |||
中老年 | |||
總計 |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(3)若從年齡在的被調(diào)查者中隨機選取3人進行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù)),點的極坐標為,設(shè)直線與曲線相交于兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“學、習、強、國”四個字,有放回地從中任取一張卡片,將三次抽取后“學”“習”兩個字都取到記為事件,用隨機模擬的方法估計事件發(fā)生的概率,利用電腦隨機產(chǎn)生整數(shù)0,1,2,3四個隨機數(shù),分別代表“學、習、強、國”這四個字,以每三個隨機數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):
232 | 321 | 210 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估計事件發(fā)生的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com