【題目】已知函數(shù) .

(1)若,討論函數(shù)的單調性;

(2)是否存在實數(shù),對任意 , 有恒成立,若存在,求出的范圍,若不存在,請說明理由;

(3)記,如果是函數(shù)的兩個零點,且 的導函數(shù),證明: .

【答案】(1)見解析;(2)見解析;(3)見解析.

【解析】試題分析(1)求導得, 三種情況討論可得的單調區(qū)間.

(2) 恒成立,不妨設,即,令,則上為增函數(shù),只要恒成立求解即可.

(3)利用,( )是函數(shù)的兩個零點這一條件得,兩式推出關于,和a的一個等式,即可利用表示。求出之后,將代入得,構造函數(shù),其中,利用導數(shù)求得其最大值為零,又表達式中, ,得證.

試題解析:(1)的定義域為

①若,則, , 上單調遞增;

②若,則,而,∴,

時, ;當

所以上單調遞減,在單調遞增;

③若,則,同理可得上單調遞減,在單調遞增.

(2)假設存在,對任意,有恒成立,

不妨設,只要,即

,只要上為增函數(shù),

只要恒成立,只要,故存在時,對任意,有恒成立.

(3)由題意知,

兩式相減,整理得,所以

,又因為,

所以

,則,

所以上單調遞減,故

,所以

點晴:本題主要考查函數(shù)單調性,不等式恒成立,及不等式的證明問題.要求單調性,求導比較導方程的根的大小,解不等式可得單調區(qū)間,要證明不等式恒成立問題可轉化為構造新函數(shù)證明新函數(shù)單調,只需要證明其導函數(shù)大于等于0(或者恒小于等于0即可),要證明一個不等式,我們可以先根據(jù)題意構造新函數(shù),求其值最值即可.這類問題的通解方法就是:劃歸與轉化之后,就可以假設相對應的函數(shù),然后利用導數(shù)研究這個函數(shù)的單調性、極值和最值,圖像與性質,進而求解得結果.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是定義在上的函數(shù),并且滿足下面三個條件:①對任意正數(shù),都有;②當時, ;③.

(1)求, 的值;

(2)證明上是減函數(shù);

(3)如果不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中,且為常數(shù)).

(1)當時,求函數(shù)的單調區(qū)間;

(2)若對于任意的,都有成立,求的取值范圍;

(3)若方程上有且只有一個實根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.

(1)如果按照性別比例分層抽樣,可得到多少個不同的樣本?(寫出算式即可,不必計算出結果)

(2)如果隨機抽取的7名同學的數(shù)學,物理成績(單位:分)對應如下表:

若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學中抽取3名同學,記3名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個幾何體的正視圖和俯視圖.

(Ⅰ)試判斷該幾何體是什么幾何體?

(Ⅱ)畫出其側視圖,并求該平面圖形的面積;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點,并且內切于定圓.

(1)求動圓圓心的軌跡方程;

(2)若上存在兩個點,(1)中曲線上有兩個點,并且三點共線, 三點共線, ,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f( x﹣1)=2x+3,且f(m﹣1)=6,則實數(shù)m等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務.該地有, 兩種“共享單車”(以下簡稱型車, 型車).某學習小組7名同學調查了該地區(qū)共享單車的使用情況.

(Ⅰ)某日該學習小組進行一次市場體驗,其中4人租到型車,3人租到型車.如果從組內隨機抽取2人,求抽取的2人中至少有一人在市場體驗過程中租到型車的概率;

(Ⅱ)根據(jù)已公布的2016年該地區(qū)全年市場調查報告,小組同學發(fā)現(xiàn)3月,4月的用戶租車情況城現(xiàn)如表使用規(guī)律.例如,第3個月租型車的用戶中,在第4個月有的用戶仍租型車.

第3個月

第4個月

租用型車

租用型車

租用型車

租用型車

若認為2017年該地區(qū)租用單車情況與2016年大致相同.已知2017年3月該地區(qū)租用, 兩種車型的用戶比例為1:1,根據(jù)表格提供的信息,估計2017年4月該地區(qū)租用兩種車型的用戶比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的右焦點為F,右頂點為A,設離心率為e,且滿足,其中O為坐標原點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點的直線l與橢圓交于MN兩點,求△OMN面積的最大值.

查看答案和解析>>

同步練習冊答案