【題目】設(shè)函數(shù)是定義在上的函數(shù),并且滿足下面三個條件:①對任意正數(shù),都有;②當(dāng)時, ;③.
(1)求, 的值;
(2)證明在上是減函數(shù);
(3)如果不等式成立,求的取值范圍.
【答案】(Ⅰ);(Ⅱ)見解析; (Ⅲ)).
【解析】試題分析:(1)利用賦值法,求、的值.
(2)利用單調(diào)性的定義,結(jié)合抽象函數(shù)之間的數(shù)值關(guān)系進(jìn)行證明.
(3)利用函數(shù)的單調(diào)性將不等式進(jìn)行轉(zhuǎn)化,解不等式即可.
試題解析:
(Ⅰ)令易得.
而,
且,得.
(Ⅱ)
∴
∴在上為減函數(shù).
(Ⅲ)由條件(1)及(Ⅰ)的結(jié)果得: ,其中,
由(Ⅱ)得: ,解得的范圍是)
點晴:本題屬于對函數(shù)單調(diào)性的證明和單調(diào)性應(yīng)用的考察,若函數(shù)在區(qū)間上單調(diào)遞增,則時,有,事實上,若,則,這與矛盾,類似地,若在區(qū)間上單調(diào)遞減,則當(dāng)時有;據(jù)此可以解不等式,由數(shù)值的大小,根據(jù)單調(diào)性就可以得自變量的大小關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知☉O:x2+y2=1和定點A(2,1),由☉O外一點P(a,b)向☉O引切線PQ,切點為Q,且滿足|PQ|=|PA|.
(1)求實數(shù)a,b間滿足的等量關(guān)系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點,試求半徑取最小值時☉P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)f(x)=x2+bx+c滿足f(2)=f(﹣2),且函數(shù)的f(x)的一個零點為1. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)對任意的 ,4m2f(x)+f(x﹣1)≥4﹣4m2恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以元/個的價格從面包店購進(jìn)面包,然后以元/個的價格出售.如果當(dāng)天賣不完,剩下的面包以元/個的價格賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了90個面包,以(單位:個, )表示面包的需求量, (單位:元)表示利潤.
(Ⅰ)求關(guān)于的函數(shù)解析式;
(Ⅱ)根據(jù)直方圖估計利潤不少于元的概率;
(III)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), 為自然對數(shù)的底數(shù).
(1)若函數(shù)的圖象在點處的切線方程為,求實數(shù), 的值;
(2)當(dāng)時,若存在, ,使成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),其對稱軸與x 軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;
(3)連結(jié)AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ (Ⅰ)判斷函數(shù)的奇偶性,并加以證明;
(Ⅱ)用定義證明f(x)在(0,1)上是減函數(shù);
(Ⅲ)函數(shù)f(x)在(﹣1,0)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫出答案,不要求寫證明過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足下列條件:
①周期;②圖象向左平移個單位長度后關(guān)于軸對稱;③.
(1)求函數(shù)的解析式;
(2)設(shè), , ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若,討論函數(shù)的單調(diào)性;
(2)是否存在實數(shù),對任意, , 有恒成立,若存在,求出的范圍,若不存在,請說明理由;
(3)記,如果是函數(shù)的兩個零點,且, 是的導(dǎo)函數(shù),證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com