11.某廠每日生產(chǎn)一種大型產(chǎn)品2件,每件產(chǎn)品的投入成本為1000元.產(chǎn)品質(zhì)量為一等品的概率為0.5,二等品的概率為0.4,每件一等品的出廠價為5000元,每件二等品的出廠價為4000元,若產(chǎn)品質(zhì)量不能達到一等品或二等品,除成本不能收回外,每生產(chǎn)1件產(chǎn)品還會帶來1000元的損失.
(Ⅰ)求在連續(xù)生產(chǎn)的3天中,恰有兩天生產(chǎn)的2件產(chǎn)品都為一等品的概率;
(Ⅱ)已知該廠某日生產(chǎn)的這種大型產(chǎn)品2件中有1件為一等品,求另1件也為一等品的概率;
(Ⅲ)求該廠每日生產(chǎn)這種產(chǎn)品所獲利潤ξ(元)的分布列和期望.

分析 (I)利用相互獨立事件的概率公式計算;
(II)使用條件概率公式計算;
(III)列出ξ所有可能的取值及對應(yīng)的概率,再計算數(shù)學(xué)期望.

解答 解:(I)設(shè)一天生產(chǎn)的2件產(chǎn)品都為一等品為事件A,則P(A)=0.52=0.25,
∴在連續(xù)生產(chǎn)的3天中,恰有兩天生產(chǎn)的2件產(chǎn)品都為一等品的概率P=0.25×0.25×0.75×${C}_{3}^{2}$=$\frac{9}{64}$.
 (II)設(shè)一天中生產(chǎn)的2件產(chǎn)品中,有一件是一等品為事件B,另一件是一等品為事件C,
則P(BC)=P(A)=0.25,P(B)=0.5×0.5+0.5×0.4×2+0.5×0.1×2=0.75,
∴該廠某日生產(chǎn)的這種大型產(chǎn)品2件中有1件為一等品,另1件也為一等品的概率為P(C|B)=$\frac{P(BC)}{P(B)}$=$\frac{1}{3}$
(III)ξ的可能取值為8000,7000,6000,2000,1000,-4000,
ξ的分布列為:

ξ80007000600020001000-4000
P$\frac{1}{4}$$\frac{2}{5}$$\frac{4}{25}$$\frac{1}{10}$$\frac{2}{25}$$\frac{1}{100}$
E(ξ)=8000×$\frac{1}{4}$+7000×$\frac{2}{5}$+6000×$\frac{4}{25}$+2000×$\frac{1}{10}$+1000×$\frac{2}{25}$+(-4000)×$\frac{1}{100}$=6000.

點評 本題考查了相互獨立事件的概率計算,條件概率,分布列與數(shù)學(xué)期望,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在(2x-3)5•(4-x-1)的展開式中含(2x2的項為255.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知y2=4x拋物線,焦點記為F,過點F作直線l交拋物線于A,B兩點,則$|{AF}|-\frac{2}{{|{BF}|}}$的最小值為( 。
A.$2\sqrt{2}-2$B.$\frac{5}{6}$C.$3-\frac{3}{2}\sqrt{2}$D.$2\sqrt{3}-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知M(1+cos2x,1),N(1,$\sqrt{3}$sin2x+a)(x∈R,a∈R,a是常數(shù)),且y=$\overrightarrow{OM}•\overrightarrow{ON}$(O為坐標(biāo)原點),點P是直線y=2x上一個動點.
(1)求y關(guān)于x的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)當(dāng)$x∈[0,\frac{π}{2}]$時,f(x)的最大值為4,求a的值;
(3)若x=$\frac{π}{2}$,a=3,求$\overrightarrow{PM}•\overrightarrow{PN}$的最小值,并求此時$\overrightarrow{OP}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|x2-2x-3>0,x∈Z},集合B={x|x>0},則集合(∁ZA)∩B的子集個數(shù)為( 。
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.(x2+2x-1)5的展開式中,x3的系數(shù)為40(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.現(xiàn)采取隨機模擬的方法估計某運動員射擊擊中目標(biāo)的概率.先由計算器給出0到9之間取整數(shù)的隨機數(shù),指定0,1,2,3表示沒有擊中目標(biāo),4,5,6,7,8,9表示集中目標(biāo),以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組如下的隨機數(shù):
7527  0293   7140   9857   0347   4373   8636   6947   1417   4698
0371  6233   2616   8045   6011   3661   9597   7424   7610   4281
根據(jù)以上數(shù)據(jù)估計該運動員射擊四次至少擊中三次的概率為:0.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“a>1“是“$\frac{1}{a}$<1“的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知P(2,0),Q是圓$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}\right.$上一動點,求PQ的中點軌跡方程,并說明軌跡是什么樣的曲線.

查看答案和解析>>

同步練習(xí)冊答案