分析 根據(jù)向量加法的三角形法則,可判斷①;根據(jù)平面向量的基本定理可判斷②③;舉出反例λ=μ=1,|$\overrightarrow{a}$|>2,可判斷④.
解答 解:∵平面向量$\overrightarrow{a}$,$\overrightarrow$和$\overrightarrow{c}$在同一平面內(nèi)且兩兩不共線,
①給定向量$\overrightarrow$,總存在向量$\overrightarrow{c}$=$\overrightarrow{a}$-$\overrightarrow$,使$\overrightarrow{a}$=$\overrightarrow$+$\overrightarrow{c}$,故①正確;
②由向量$\overrightarrow$,$\overrightarrow{c}$和$\overrightarrow{a}$在同一平面內(nèi)且兩兩不共線,
故給定向量$\overrightarrow$和$\overrightarrow{c}$,總存在實數(shù)λ和μ,使$\overrightarrow{a}$=λ$\overrightarrow$+μ$\overrightarrow{c}$,故②正確;
③給定單位向量$\overrightarrow$和正數(shù)μ,不一定存在單位向量$\overrightarrow{c}$和實數(shù)λ,使$\overrightarrow{a}$=λ$\overrightarrow$+μ$\overrightarrow{c}$,故③錯誤;
④當λ=μ=1,|$\overrightarrow{a}$|>2時,不總存在單位向量$\overrightarrow$和單位向量$\overrightarrow{c}$,使$\overrightarrow{a}$=λ$\overrightarrow$+μ$\overrightarrow{c}$,故④錯誤.
故答案為:①②.
點評 本題考查的知識點是平面向量的基本定理和應(yīng)用,注意運用向量的加減運算性質(zhì)和單位向量的概念,難度中檔.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,$\frac{3}{4}$] | C. | ($\frac{1}{2}$,+∞) | D. | [$\frac{3}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com