11.?dāng)?shù)列{an}的前n項和Sn=n2-5n(n∈N*),若p-q=4,則ap-aq=( 。
A.20B.16C.12D.8

分析 根據(jù)an=Sn-Sn-1可得an是等差數(shù)列,可得答案.

解答 解:Sn=n2-5n(n∈N*),可得a1=Sn=-4
當(dāng)n≥2時,則Sn-1=(n-1)2-5(n-1)=n2+7n+6.
∵an=Sn-Sn-1
∴an=2n-6,
當(dāng)n=1,可得a1=-4
∵an-an-1=2常數(shù),∴an是等差數(shù)列,首項為-4,公差d=2.
∵p-q=4,
令q=1,則p=5,
那么a5-a1=8.
故選D

點評 本題考查等差的證明與等差數(shù)列的性質(zhì)的運用,考查運算與推理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.甲,乙,丙三個學(xué)生數(shù)學(xué)考試成績分別為92,75,98.設(shè)計一程序計算這三個學(xué)生數(shù)學(xué)成績的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,AB=BC=3,∠BAC=30°,CD是AB邊上的高,則$\overrightarrow{CD}•\overrightarrow{CB}$=( 。
A.$-\frac{9}{4}$B.$\frac{9}{4}$C.$\frac{27}{4}$D.$-\frac{27}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別是F1、F2,離心率為$\frac{1}{2}$,以原點O為圓心,橢圓C的短半軸長為半徑的圓與直線x+$\sqrt{2}$y-3=0相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)動直線l;y=kx+m與橢圓C相切,分別過點F1、F2作直線垂直于l,垂足分別為D、E,求|F1D|+|F2E|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列四個函數(shù)中,既是奇函數(shù)又在定義域上單調(diào)遞減的是( 。
A.y=2-|x|B.y=tanxC.y=-x3D.$y={log_{\frac{1}{5}}}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,長為2$\sqrt{3}$,寬為$\frac{1}{2}$的矩形ABCD,以A、B為焦點的橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1恰好過C、D兩點.
(1)求橢圓M的標(biāo)準(zhǔn)方程
(2)若直線l:y=kx+3與橢圓M相交于P、Q兩點,求S△POQ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法正確的是( 。
A.若x,y∈R,且$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,則$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$
B.設(shè)命題p:?x>0,x2>2x,則¬p:?x0≤0,x02≤2${\;}^{{x}_{0}}$
C.△ABC中,A>B是sinA>sinB的充分必要條件
D.命題“若a=-1,則f(x)=ax2+2x-1只有一個零點”的逆命題為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點,點B是短軸頂點,直線BF2與橢圓C相交于另一點D.若△F1BD是等腰三角形,則橢圓C的離心率為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點P是函數(shù)y=x-2lnx圖象上一點,點Q是直線x+y+1=0上的動點,則PQ的最小值為$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案