10.已知復(fù)數(shù)z=a2-1-(a2-3a+2)i,a∈R.
(1)若z是純虛數(shù)時,求a的值;
(2)若z是虛數(shù),且z的實部比虛部大時,求a的取值范圍.

分析 (1)利用復(fù)數(shù)的基本概念,列出方程求解即可.
(2)通過復(fù)數(shù)的實部比虛部大時,列出不等式求解即可.

解答 解:復(fù)數(shù)z=a2-1-(a2-3a+2)i,a∈R.
(1)若z是純虛數(shù)時,可得:a2-1=0,a2-3a+2≠0,解得a=1.
a的值為:1;
(2)若z是虛數(shù),且z的實部比虛部大時,
可得:a2-1>-a2+3a-2≠0,解得a>1或a$<\frac{1}{2}$且a≠2.
a的取值范圍:(-∞,$\frac{1}{2}$)∪(1,2)∪(2,+∞).

點評 本題考查復(fù)數(shù)的基本概念,不等式的解法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-(3a+1)x+3alnx.
(Ⅰ)若曲線y=f(x)在點(4,f ( 4 ))處的切線的斜率小于0,求f(x)的單調(diào)區(qū)間;
(Ⅱ)對任意的a∈[1,3],x1,x2∈[1,3](x1≠x2),恒有$|f({x_1})-f({x_2})|<k|\frac{1}{x_1}-\frac{1}{x_2}|$,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對任意x∈R都有xf′(x)<f(x)成立,則( 。
A.3f(2)>2f(3)B.3f(2)=2f(3)
C.3f(2)<2f(3)D.3f(2)與2f(3)的大小不確定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C的對邊分別為a,b,c,且b2+c2=a2+$\sqrt{3}$bc,acosB=bcosA
(1)求角A,B,C的大小;
(2)若BC邊上的中線AM的長為$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{sinax}{x},x<0}\\{b,x=0}\\{xcos\frac{1}{x}+2,x>0}\end{array}\right.$在定義域內(nèi)連續(xù),則a+b=( 。
A.4B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知m,n∈R,函數(shù)f(x)=(4x+m)lnx,g(x)=x2+nx-5,曲線y=f(x)與曲線y=g(x)在x=1處的切線相同.
(1)求f(x),g(x)的解析式:
(2)求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(3)證明:當(dāng)x∈(0,k](0<k≤1)時,不等式(2x+1)f(x)-(2x+1)g(x)≤0恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)z=$\frac{1}{{i}^{3}}$在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為( 。
A.(0,1)B.(0,-1)C.(-1,0)D.(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x+1|-2a,x≤0}\\{lo{g}_{3}x,x>0}\\{\;}\end{array}\right.$.
①當(dāng)a=0時,若f(x)=0,則x=±1;
②若f(x)有三個不同零點,則實數(shù)a的取值范圍為0<a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某班甲、乙、丙三名同學(xué)競選班委,三人間是否當(dāng)選相互獨立,甲當(dāng)選的概率為$\frac{4}{5}$,乙當(dāng)選的概率為$\frac{3}{5}$,丙當(dāng)選的概率為$\frac{7}{10}$,求:
(1)恰有一名同學(xué)當(dāng)選的概率;
(2)至多有兩人當(dāng)選的概率.

查看答案和解析>>

同步練習(xí)冊答案