分析 利用換元法設(shè)x+1=t,轉(zhuǎn)化為關(guān)于t的多項(xiàng)式,根據(jù)系數(shù)之間的關(guān)系進(jìn)行求解即可.
解答 解:令x+1=t,則x=t-1,
則方程等價(jià)為[(t-1)2+1](2t+1)9=a0+a1t+a2t2+…+a11t11,
即(t2-2t+2)(2t+1)9=a0+a1t+a2t2+…+a11t11,
則a11為展開(kāi)式中t11的系數(shù),則a11=29=512
a1為一次項(xiàng)的系數(shù),則a1=-2×1+1×C19×2=18-2=16.
a2為二次項(xiàng)的系數(shù),則a2=1×1-2×C19×2+2×C29×22=1-36+288=253.
則a1+a2+a11=16+253+512=781,
故答案為:781
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,利用換元法轉(zhuǎn)化為關(guān)于t的多項(xiàng)式是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 這三條直線必共點(diǎn) | B. | 這三條直線不可能在同一平面內(nèi) | ||
C. | 其中必有兩條直線異面 | D. | 其中必有兩條直線共面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -\frac{4}{5} | B. | \frac{4}{5} | C. | -\frac{3}{5} | D. | \frac{3}{5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
\overline{x} | \overline{y} | \overline{z} | \sum_{i=1}^{7}(xi-\overline{x})2 | \sum_{i=1}^{7}(xi-\overline{x})(yi-\overline{y}) | \sum_{i=1}^{7}(xi-\overline{x})(zi-\overline{z}) |
27.4 | 81.31 | 3.6 | 148 | 2935.13 | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2π | B. | π | C. | \frac{π}{2} | D. | \frac{π}{4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com