【題目】我國在北宋年間(公元1084年)第一次印刷出版了《算經(jīng)十書》,即賈憲的《黃帝九章算法細草》,劉益的《議古根源》,秦九韶的《數(shù)書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章算法》、《日用算法》和《楊輝算法》,朱世杰的《算學啟蒙》和《四元玉鑒》.這些書中涉及的很多方面都達到古代數(shù)學的高峰,其中一些“算法”如開立方和開四次方也是當時世界數(shù)學的高峰.哈三中圖書館中正好有這十本書,現(xiàn)在小張同學從這十本書中任借三本閱讀,那么他借到的三本書中書名中恰有一個“算”字的概率為______.

【答案】

【解析】

先確定含有“算”字的書,結(jié)合組合數(shù)分別求出基本事件總數(shù)、恰含有一個“算”字的基本事件數(shù),利用古典概型概率計算公式即可求解.

根據(jù)題意可知,這十本書中共有五本有一個“算”字,所以小張同學從這十本書中任借三本閱讀共有種情況,他借到的三本書中書名中恰有一個“算”字共有種情況,故概率為.

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面四邊形中,E,F中點,,,,將沿對角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是(

A.平面B.異面直線所成的角為90°

C.異面直線所成的角為60°D.直線與平面所成的角為30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為4,點, 分別為, 的中點,將, ,分別沿, 折起,使 兩點重合于點,連接.

(1)求證: 平面

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的上頂點為,左,右焦點分別為,,的面積為,直線的斜率為.為坐標原點.

1)求橢圓的方程;

2)設(shè)過點的直線與橢圓交于點不在軸上),垂直于的直線與交于點,與軸交于點.,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】哈爾濱市第三中學校響應(yīng)教育部門疫情期間停課不停學的號召,實施網(wǎng)絡(luò)授課,為檢驗學生上網(wǎng)課的效果,高三學年進行了一次網(wǎng)絡(luò)模擬考試.全學年共1500人,現(xiàn)從中抽取了100人的數(shù)學成績,繪制成頻率分布直方圖(如下圖所示).已知這100人中分數(shù)段的人數(shù)比分數(shù)段的人數(shù)多6.

1)根據(jù)頻率分布直方圖,求ab的值,并估計抽取的100名同學數(shù)學成績的中位數(shù);

2)現(xiàn)用分層抽樣的方法從分數(shù)在,的兩組同學中隨機抽取6名同學,從這6名同學中再任選2名同學作為網(wǎng)絡(luò)課堂學習優(yōu)秀代表發(fā)言,求這2名同學的分數(shù)不在同一組內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的普通方程為,以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(I)求的參數(shù)方程與的直角坐標方程;

(II)射線交于異于極點的點,與的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

大學生是國家的未來,代表著國家可持續(xù)發(fā)展的實力,能夠促進國家綜合實力的提高.據(jù)統(tǒng)計,2016年至2020年我國高校畢業(yè)生人數(shù)y(單位:萬人)的數(shù)據(jù)如下表:

年份

2016

2017

2018

2019

2020

年份代號x

16

17

18

19

20

高校畢業(yè)生人數(shù)y(單位:萬人)

765

795

820

834

874

1)根據(jù)上表數(shù)據(jù),計算yx的相關(guān)系數(shù)r,并說明yx的線性相關(guān)性的強弱.

(已知:,則認為yx線性相關(guān)性很強;,則認為yx線性相關(guān)性一般;,則認為yx線性相關(guān)性較弱)

2)求y關(guān)于x的線性回歸方程,并預(yù)測2022年我國高校畢業(yè)生的人數(shù)(結(jié)果取整數(shù)).

參考公式和數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4―4:坐標系與參數(shù)方程]

在直角坐標系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點坐標;

(2)若C上的點到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長為,且離心率為.

1)求橢圓的標準方程;

2)設(shè)橢圓的左焦點為,點是橢圓與軸負半軸的交點,經(jīng)過的直線與橢圓交于點,經(jīng)過且與平行的直線與橢圓交于點,若,求直線的方程.

查看答案和解析>>

同步練習冊答案