A. | $\frac{1}{3}$ | B. | $\sqrt{5}$ | C. | 2$\sqrt{2}$ | D. | $\frac{2\sqrt{2}}{3}$ |
分析 由已知中正四面體的所有面都是等邊三角形,取CD的中點E,連接AE,BE,由等腰三角形“三線合一”的性質(zhì),易得∠AEB即為側(cè)面與底面所成二面角的平面角,解三角形ABE即可得到正四面體側(cè)面與底面所成二面角的余弦值.
解答 解:不妨設(shè)正四面體為A-BCD,
取CD的中點E,連接AE,BE,
設(shè)四面體的棱長為2,則AE=BE=$\sqrt{3}$
且AE⊥CD,BE⊥CD,
則∠AEB即為側(cè)面與底面所成二面角的平面角.
在△ABE中,cos∠AEB=$\frac{A{E}^{2}+B{E}^{2}-A{B}^{2}}{2AE•BE}=\frac{1}{3}$,
故正四面體側(cè)面與底面所成二面角的余弦值是$\frac{1}{3}$.
故選A.
點評 本題考查的知識點是二面角的平面角及求法,其中確定∠AEB即為相鄰兩側(cè)面所成二面角的平面角,是解答本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1$-\sqrt{2}$ | B. | 3 | C. | $\sqrt{2}-1$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | [0,2] | C. | (0,2] | D. | [-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,+∞) | C. | (1,+∞) | D. | (-∞,-1)和 (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com