已知二次函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)若,記為數(shù)列的前項和,且),點(diǎn)在函數(shù)的圖像上,求的表達(dá)式.

(1)時, 解集是;時,解集是;時,解集是
(2)

解析試題分析:解:(Ⅰ)即:
時,方程的判別式  1分
方程兩根為  2分
解集是  3分
時,方程的判別式
Ⅰ)當(dāng),即時,解集是  4分
Ⅱ)當(dāng)時,解集是  5分
綜上所述,時, 解集是;時,解集是;時,解集是  6分
(Ⅱ)    點(diǎn)在函數(shù)的圖像上,
  7分
整理得

             9分
,又,  10分
所以
      12分
考點(diǎn):等比數(shù)列
點(diǎn)評:主要是考查了等比數(shù)列的通項公式以及求和的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,數(shù)列是首項為,公比也為的等比數(shù)列,令
(Ⅰ)求數(shù)列的前項和;
(Ⅱ)當(dāng)數(shù)列中的每一項總小于它后面的項時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列{}的前n項和為,已知對任意的,點(diǎn),均在函數(shù)均為常數(shù))的圖像上.     
(1)求r的值;     
(2)當(dāng)b=2時,記  求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,已知.
(1)求、并判斷能否為等差或等比數(shù)列;
(2)令,求證:為等比數(shù)列;
(3)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和為,點(diǎn)在直線上,.(1)證明數(shù)列為等比數(shù)列,并求出其通項;(2)設(shè),記,求數(shù)列的前

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列{}的前n項和為,,
(1)設(shè),證明:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項和;
(3)若.求不超過的最大整數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,數(shù)列滿足,數(shù)列滿足;數(shù)列為公比大于的等比數(shù)列,且為方程的兩個不相等的實根.
(Ⅰ)求數(shù)列和數(shù)列的通項公式;
(Ⅱ)將數(shù)列中的第項,第項,第項,……,第項,……刪去后剩余的項按從小到大的順序排成新數(shù)列,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前n項和為,,且,數(shù)列滿足,數(shù)列的前n項和為(其中).
(Ⅰ)求
(Ⅱ)若對任意的,不等式恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的各項均為正數(shù),前n項的和Sn
⑴ 求{an}的通項公式;
⑵ 設(shè)等比數(shù)列{bn}的首項為b,公比為2,前n項的和為Tn.若對任意n∈N*,Sn≤Tn
均成立,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案