分析 (1)利用正弦定理將邊化角即可得出cosB;
(2)求出sinA,利用兩角和的正弦函數(shù)公式計算.
解答 解:(1)∵asin2B=$\sqrt{3}$bsinA,
∴2sinAsinBcosB=$\sqrt{3}$sinBsinA,
∴cosB=$\frac{\sqrt{3}}{2}$,∴B=$\frac{π}{6}$.
(2)∵cosA=$\frac{1}{3}$,∴sinA=$\frac{2\sqrt{2}}{3}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{2\sqrt{2}}{3}×\frac{\sqrt{3}}{2}+\frac{1}{2}×\frac{1}{3}$=$\frac{2\sqrt{6}+1}{6}$.
點評 本題考查了正弦定理解三角形,兩角和的正弦函數(shù),屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 3 | C. | -$\frac{1}{3}$ | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{5}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{11}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 與b有關(guān),且與c有關(guān) | B. | 與b有關(guān),但與c無關(guān) | ||
C. | 與b無關(guān),且與c無關(guān) | D. | 與b無關(guān),但與c有關(guān) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com