7.小明在解決三視圖還原問題時,錯把圖一的三視圖看成圖二的三視圖,假設(shè)圖一所對應(yīng)幾何體中最大的面積為S1,圖二所對應(yīng)幾何體中最大面的面積為S2,三視圖中所有三角形均為全等的等腰直角三角形,則$\frac{{S}_{1}}{{S}_{2}}$=( 。
A.1B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{6}}{3}$

分析 根據(jù)已知中的三視圖,分別求出兩個幾何體中面積最大的面,進而可得答案

解答 解:假設(shè)三視圖中全等的等腰直角三角形的腰長為a,
則圖一的三視圖對應(yīng)的幾何體中,
面積最大的面是直角邊長為:a,$\sqrt{2}a$的直角三角形,
故S1=$\frac{\sqrt{2}}{2}{a}^{2}$,
圖二的三視圖對應(yīng)的幾何體中,
面積最大的面是邊長為:$\sqrt{2}a$的等邊三角形,故S2=$\frac{\sqrt{3}}{4}•(\sqrt{2}a)^{2}$=$\frac{\sqrt{3}}{2}{a}^{2}$,
故$\frac{{S}_{1}}{{S}_{2}}$=$\frac{\frac{\sqrt{2}}{2}{a}^{2}}{\frac{\sqrt{3}}{2}{a}^{2}}$=$\frac{\sqrt{6}}{3}$,
故選:D

點評 本題考查的知識點是空間幾何體的三視圖,三角形面積公式,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.四邊形ABCD中,∠BAC=90°,BD+CD=2,則它的面積最大值等于$\frac{1+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設(shè)隨機變量X與Y相互獨立,概率密度分別為fX(x)=$\left\{\begin{array}{l}{2{e}^{-2x},x>0}\\{0,x≤0}\end{array}\right.$,fY(y)=$\left\{\begin{array}{l}{3{e}^{-3y},y>0}\\{0,y≤0}\end{array}\right.$,求E(XY)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)集合A={x∈Z|x2-2x-3≤0},B={0,1},則∁AB=(  )
A.{-3,-2,-1}B.{-1,2,3}C.{-1,0,1,2,3}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若0<x1<x2<1,則( 。
A.ex2-ex1>lnx2-lnx1B.ex2-ex1<lnx2-lnx1
C.x2ex1>x1ex2D.x2ex1<x1ex2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.當x>0時,函數(shù)f(x)=(aex+b)(x-2)單調(diào)遞增,且函數(shù)y=f(x-1)的圖象關(guān)于直線x=1對稱,則使得f(2-m)>0成立的m的取值范圍是( 。
A.{m|m<-2或m>2}B.{m|-2<m<2}C.{m|m<0或m>4}D.{m|0<m<4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y≥0}\\{x-y-1≤0}\\{y>0}\end{array}\right.$,且z=$\frac{2x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的最大值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,三棱錐P-ABC中,平面PAC⊥平面ABC,∠ABC=$\frac{π}{2}$,點D、E在線段AC上,且AD=DE=EC=1,PD=PC=2,點F在線段AB上,且EF∥BC.
(1)證明:AB⊥平面PFE;
(2)若BC=$\sqrt{3}$,求四棱錐P-DFBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,點F1、F2是橢圓C1、C2的左右焦點,橢圓C1與雙曲線C2的漸近線交于點P,PF1⊥PF2,橢圓C1與雙曲線C2的離心率分別為e1、e2,則( 。
A.e22=$\frac{1+{{e}_{1}}^{4}}{1-{{e}_{1}}^{2}}$B.e22=$\frac{{2{e}_{1}}^{4}}{1-{{e}_{1}}^{2}}$
C.e22=$\frac{1-{{e}_{1}}^{4}}{2{{e}_{1}}^{2}-1}$D.e22=$\frac{{{e}_{1}}^{4}}{2{{e}_{1}}^{2}-1}$

查看答案和解析>>

同步練習冊答案