【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),判斷并說明函數(shù)的零點(diǎn)個(gè)數(shù).若函數(shù)所有零點(diǎn)均在區(qū)間內(nèi),求的最小值.
【答案】(1)當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減(2)存在兩個(gè)零點(diǎn),,且,,詳見解析;的最小值為3
【解析】
(1)函數(shù)求導(dǎo),根據(jù)二次函數(shù)的性質(zhì)分 ,三種情況分類討論求解..
(2)當(dāng)時(shí),,當(dāng)時(shí),單調(diào)遞增,,,則,故不存在零點(diǎn);然后從的定義域入手,分,,,四種情況分類討論求解.
(1)的定義域?yàn)?/span>,
,
當(dāng)時(shí),,所以在上單調(diào)遞增;
當(dāng)時(shí),,,所以在上單調(diào)遞增;
當(dāng)時(shí),令,得,(舍).
當(dāng)時(shí),,當(dāng),,
所以在上單調(diào)遞增,在上單調(diào)遞減.
綜上所述,當(dāng)時(shí),在上單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.
(2)當(dāng)時(shí),,
當(dāng)時(shí),單調(diào)遞增,,,則,故不存在零點(diǎn);
當(dāng)時(shí),,在上單調(diào)遞減,
所以,,
所以,單調(diào)遞增,
又,,
所以存在唯一,使得.
當(dāng)時(shí),,,
所以單調(diào)遞減,
又,,
所以存在,使得,
當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減,
又,,
因此,在上恒成立,故不存在零點(diǎn).
當(dāng)時(shí),,所以單調(diào)遞減,
因?yàn)?/span>,所以,單調(diào)遞減,
又,,
所以存在唯一,使得.
當(dāng)時(shí),,故不存在零點(diǎn).
綜上,存在兩個(gè)零點(diǎn),,且,,
因此的最小值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二手車經(jīng)銷商小王對(duì)其所經(jīng)營的A型號(hào)二手汽車的使用年數(shù)x與銷售價(jià)格y(單位:萬元/輛)進(jìn)行整理,得到如下數(shù)據(jù):
如圖是z關(guān)于x的折線圖:
(1)由折線圖可以看出,可以用線性回歸模型擬合z和x的關(guān)系,請(qǐng)用相關(guān)系數(shù)r加以說明(注:若相關(guān)系數(shù)︱r︱0.75,則認(rèn)為兩個(gè)變量相關(guān)程度較強(qiáng));
(2)求y關(guān)于x的回歸方程并預(yù)測某輛A型號(hào)二手車當(dāng)使用年數(shù)為9年時(shí)售價(jià)約為多少?(小數(shù)點(diǎn)后面保留兩位有效數(shù)字);
(3)基于成本的考慮,該型號(hào)二手車的售價(jià)不得低于7118元,請(qǐng)根據(jù)(2)求出的回歸方程預(yù)測在收購該型號(hào)的二手車時(shí)車輛的使用年限不得超過多少年?
參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:
,
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|,a∈R.
(1)當(dāng)f(2)+f(﹣2)>4時(shí),求a的取值范圍;
(2)若a>0,x,y∈(﹣∞,a],不等式f(x)≤|y+3|+|y﹣a|恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,運(yùn)城市“創(chuàng)城辦”為了調(diào)查市民對(duì)創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識(shí)問卷調(diào)查(一位市民只能參加一次),通過隨機(jī)抽樣,得到參加問卷調(diào)查的人的得分統(tǒng)計(jì)結(jié)果如表所示:.
組別 | |||||||
頻數(shù) |
(1)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求;
(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
①得分不低于的可以獲贈(zèng)次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)次隨機(jī)話費(fèi);
②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:
贈(zèng)送話費(fèi)的金額(單位:元) | ||
概率 |
現(xiàn)有市民甲參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列與數(shù)學(xué)期望.
附:參考數(shù)據(jù)與公式:,若,則,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓臺(tái)的軸截面為等腰梯形,,,,圓臺(tái)的側(cè)面積為.若點(diǎn)C,D分別為圓,上的動(dòng)點(diǎn)且點(diǎn)C,D在平面的同側(cè).
(1)求證:;
(2)若,則當(dāng)三棱錐的體積取最大值時(shí),求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的中心為坐標(biāo)原點(diǎn)焦點(diǎn)在軸上,右頂點(diǎn)到右焦點(diǎn)的距離與它到右準(zhǔn)線的距離之比為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上關(guān)于軸對(duì)稱的任意兩點(diǎn),設(shè),連接交橢圓于另一點(diǎn).求證:直線過定點(diǎn)并求出點(diǎn)的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)的直線交橢圓于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年5月20日以來,廣東自西北到東南出現(xiàn)了一次明顯降雨.為了對(duì)某地的降雨情況進(jìn)行統(tǒng)計(jì),氣象部門對(duì)當(dāng)?shù)?/span>20日~28日9天內(nèi)記錄了其中100小時(shí)的降雨情況,得到每小時(shí)降雨情況的頻率分布直方圖如下:
若根據(jù)往年防汛經(jīng)驗(yàn),每小時(shí)降雨量在時(shí),要保持二級(jí)警戒,每小時(shí)降雨量在時(shí),要保持一級(jí)警戒.
(1)若以每組的中點(diǎn)代表該組數(shù)據(jù)值,求這100小時(shí)內(nèi)每小時(shí)的平均降雨量;
(2)若從記錄的這100小時(shí)中按照警戒級(jí)別采用分層抽樣的方法抽取10小時(shí)進(jìn)行深度分析.再從這10小時(shí)中隨機(jī)抽取3小時(shí),求抽取的這3小時(shí)中屬于一級(jí)警戒時(shí)間的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn)在圓內(nèi),在過點(diǎn)P所作的圓的所有弦中,弦長最小值為.
(1)求實(shí)數(shù)a的值;
(2)若點(diǎn)M為圓外的動(dòng)點(diǎn),過點(diǎn)M向圓C所作的兩條切線始終互相垂直,求點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有( )種.
A.408B.120C.156D.240
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com