17.已知M是面積為1的△ABC內(nèi)的一點(diǎn)(不含邊界),若△MBC,△MCA和△MAB的面積分別為x,y,z,則$\frac{1}{x+y}$+$\frac{x+y}{z}$的最小值是( 。
A.2B.3C.3.5D.4

分析 由已知可得,x+y+z=1,再利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:由已知可得,x+y+z=1,
∴$\frac{1}{x+y}$+$\frac{x+y}{z}$=$\frac{x+y+z}{x+y}$+$\frac{x+y}{z}$=1+$\frac{z}{x+y}$+$\frac{x+y}{z}$≥3.
故選:B.

點(diǎn)評 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知F1、F2為橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的左、右焦點(diǎn),過F1且垂直于F1F2的直線交橢圓于A,B兩點(diǎn),則線段AB的長是$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且S4=a5-a1
(1)求數(shù)列{an}的公比q的值;
(2)記bn=log2an+1,數(shù)列{bn}的前n項(xiàng)和為Tn,若T4=2b5,求數(shù)列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前9項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.質(zhì)檢過后,某校為了解理科班學(xué)生的數(shù)學(xué)、物理學(xué)習(xí)情況,利用隨機(jī)數(shù)表法從全年級600名理科生抽取100名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,已知學(xué)生考號的后三位分別為000,001,002,…,599.
(1)若從隨機(jī)數(shù)表的第5行第7列的數(shù)開始向右讀,請依次寫出抽取的前7人的后三位考號;
(2)如果題(1)中隨機(jī)抽取到的7名同學(xué)的數(shù)學(xué)、物理成績(單位:分)對應(yīng)如表:
數(shù)學(xué)成績9097105113127130135
物理成績105116120127135130140
從這7名同學(xué)中隨機(jī)抽取3名同學(xué),記這3名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為ζ,求ζ的分布列和數(shù)學(xué)期望(規(guī)定成績不低于120分的為優(yōu)秀).附:(下面是摘自隨機(jī)數(shù)表的第4行到第6行)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,一個(gè)頂點(diǎn)在拋物線x2=4y的準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),M,N為橢圓上的兩個(gè)不同的動點(diǎn),直線OM,ON的斜率分別為k1和k2,是否存在常數(shù)P,當(dāng)k1k2=P時(shí)△MON的面積為定值;若存在,求出P的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合M={x|x2≤x},N={x|lgx≤0},則M∩N=(  )
A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線Γ:y2=2px上一點(diǎn)M(3,m)到焦點(diǎn)的距離為4,動直線y=kx(k≠0)交拋物線Γ于坐標(biāo)原點(diǎn)O和點(diǎn)A,交拋物線Γ的準(zhǔn)線于點(diǎn)B,若動點(diǎn)P滿足$\overrightarrow{OP}=\overrightarrow{BA}$,動點(diǎn)P的軌跡C的方程為F(x,y)=0;
(1)求出拋物線Γ的標(biāo)準(zhǔn)方程;
(2)求動點(diǎn)P的軌跡方程F(x,y)=0;(不用指明范圍)
(3)以下給出曲線C的四個(gè)方面的性質(zhì),請你選擇其中的三個(gè)方面進(jìn)行研究:①對稱性;②圖形范圍;③漸近線;④y>0時(shí),寫出由F(x,y)=0確定的函數(shù)y=f(x)的單調(diào)區(qū)間,不需證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示其中一個(gè)數(shù)字被污損.
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學(xué)習(xí)積累的熱情,從中獲益匪淺,現(xiàn)從觀看節(jié)目的觀眾中隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語知識的時(shí)間(單位:小時(shí))與年齡(單位:歲),并制作了對照表(如下表所示);
年齡x(歲) 20 30 40 50
 周均學(xué)習(xí)成語知識時(shí)間y(小時(shí)) 2.5 3 44.5
由表中數(shù)據(jù),試求線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并預(yù)測年齡為50歲觀眾周均學(xué)習(xí)成語知識時(shí)間.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=i}^{m}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=i}^{n}{{x}^{2}}_{i}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知α∈R,則“cosα=-$\frac{\sqrt{3}}{2}$”是“α=2kπ+$\frac{5π}{6}$,k∈Z”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案