6.某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示其中一個數(shù)字被污損.
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學(xué)習(xí)積累的熱情,從中獲益匪淺,現(xiàn)從觀看節(jié)目的觀眾中隨機(jī)統(tǒng)計了4位觀眾的周均學(xué)習(xí)成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示);
年齡x(歲) 20 30 40 50
 周均學(xué)習(xí)成語知識時間y(小時) 2.5 3 44.5
由表中數(shù)據(jù),試求線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并預(yù)測年齡為50歲觀眾周均學(xué)習(xí)成語知識時間.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=i}^{m}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=i}^{n}{{x}^{2}}_{i}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

分析 (1)求出基本事件的個數(shù),即可求出概率;
(2)求出回歸系數(shù),可得回歸方程,再預(yù)測年齡為50歲觀眾周均學(xué)習(xí)成語知識時間.

解答 解:(1)設(shè)被污損的數(shù)字為a,則a有10種情況.
令88+89+90+91+92>83+83+97+90+a+99,則a<8,
∴東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù),有8種情況,
其概率為$\frac{8}{10}$=$\frac{4}{5}$;
(2)$\overline{x}$=35,$\overline{y}$=3.5,$\stackrel{∧}$=$\frac{\sum_{i=i}^{m}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=i}^{n}{{x}^{2}}_{i}-n{x}^{2}}$=$\frac{525-10×35×3.5}{5400-10×3{5}^{2}}$=$\frac{7}{100}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=$\frac{21}{20}$.
∴$\stackrel{∧}{y}$=$\frac{7}{100}$x+$\frac{21}{20}$.
x=50時,$\stackrel{∧}{y}$=4.55小時.

點評 本題考查古典概型概率的計算,考查獨立性檢驗知識的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若復(fù)數(shù)$z=\frac{1+i}{1-i}$,$\overline z$為z的共軛復(fù)數(shù),則${({\overline z})^{2017}}$=( 。
A.iB.-iC.-22017iD.22017i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知M是面積為1的△ABC內(nèi)的一點(不含邊界),若△MBC,△MCA和△MAB的面積分別為x,y,z,則$\frac{1}{x+y}$+$\frac{x+y}{z}$的最小值是( 。
A.2B.3C.3.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點F為拋物線y2=-4x的焦點,過點F做x軸的垂線交橢圓于A,B兩點,且|AB|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若M,N為橢圓上異于點A的兩點,且滿足$\frac{{\overrightarrow{AM}•\overrightarrow{AF}}}{{\overrightarrow{|{AM}|}}}=\frac{{\overrightarrow{AN}•\overrightarrow{AF}}}{{\overrightarrow{|{AN}|}}}$,問直線MN的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知直線y=k(x+2)(k>0)與拋物線C:y2=8x相交于A,B兩點,F(xiàn)為C的焦點,若|FA|=2|FB|,則點A到拋物線的準(zhǔn)線的距離為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個幾何體的三視圖如圖所示,則這個幾何體的體積是( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{\frac{x}{3}+\frac{y}{4}≤1}\end{array}\right.$,則x-2y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)一圓錐的外接球與內(nèi)切球的球心位置相同,且外接球的半徑為2,則該圓錐的體積為(  )
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x-$\frac{1}{a}$|+|x+2a|(a∈R,且a≠0)
(Ⅰ)當(dāng)a=-1時,求不等式f(x)≥5的解集;
(Ⅱ)證明:f(x)≥2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案